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1 Abstract

In the current generation of Natural Language Processing (NLP), in order to make language
model robust on understanding and reasoning, we need to train it on a large amount of data
samples. However, sometimes it is hard to collect a huge amount of data, for example, time
series data for tracking people’s emotional responds to COVID-19. Thus, to improve language
model’s comprehensive and reasoning abilities while training on a small number of text samples,
we further explore the syntax use and semantic parsing as well as taking advantage of the
mathematical logic rules to form an internal logic for language model. But it is true that the
structure of texts is variable according to the domain and environment, so it is need to combine
the internal logic with the use of Meta-Learning to follow the factuality of texts.

2 Introduction

By definition, language is the principal method of human communication, consisting of words
used in a structured and conventional way and conveyed by speech, writing, or gesture. NLP
enables computers to understand and process human language.

Currently the biggest questions is that can human beings communicate with computers in
human beings’ natural languages? One big challenge of addressing this is that human speech is
unstructured data and ambiguous in nature, however, computers need structured data.

2.1 History

Based on the main concerns at that period of time the history of NLP can be divided into four
phases.

The first phase, Machine Translation Phase, is from late 1940s to late 1960s. In early 1950s,
following Booth and Richens’ investigation and Weaver’s memorandum on machine translation,
NLP research started. In 1954, automatic translation from Russian to English demonstrated
in the Georgetown-IBM experiment. In 1961, the high lighted work on Machine Translation of
Languages and Applied Language analysis presented in Teddington International Conference.

The second phase is from late 1960s to late 1970s, which is mainly about world knowledge
and the construction and manipulation of meaning representations. In 1961, a BASEBALL
question-answering system with a restricted input and a simple language processing was de-
veloped. In 1968, a much advanced system, which could inference on the knowledge base in
interpreting and responding to language input was described.

The third phase is from late 1970s to late 1980s, researchers moved to the use of logic for
knowledge representation and reasoning, due to the failure of building practical system
in last phase. Some practical tools like parsers, e.g. Alvey Natural Language Tools, and more
operational and commercial systems for database query are invented. The grammatical-logical
approach and lexicon made general-purpose sentence processors more powerful, e.g. SRI’s Core
Language Engine and Discourse Representation Theory.

The fourth phase, lexical and corpus phase, is from 1990s to now. One is the increasing
influence of lexicalized approach to grammar. The other is a revolution in natural language
processing caused by the introduction of machine learning algorithms for language processing.
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2.2 Processing Steps

There are several steps to process natural languages:

• Morphological Processing: Breaking chunks of language inputs into sets of tokens
corresponding to paragraphs, sentences and words. E.g. sub-word tokens.

• Syntax Parsing: First, checking whether a sentence is well formed or not. For example,
the sentence “The school goes to the boy” is not well formed and would be rejected by
syntax parser. Second, breaking well formed sentence up into a structure that shows the
syntactic relationships between different words.

• Semantic Parsing: First, checking for meaningfulness. For example, the sentence “Hot
ice-cream” cannot be understood and would be rejected semantic parser. Second, drawing
exact meaning from the text.

• Pragmatic Analysis: Fitting the actual objects/events, which is the given context
obtained during Semantic Parsing. For example, the sentence “Put the banana in the
basket on the shelf” can have two semantic interpretations and pragmatic Analyser will
choose between these two possibilities.

2.3 Ambiguity

Ambiguity represents the capability of being understood in more than one way. Natural
Language is ambiguous, there are several types of ambiguities:

• Lexical Ambiguity is the ambiguity of a single word. For example, the distinguish of a
word as a noun, an adjective, or a verb.

• Syntactic Ambiguity occurs when a sentence could be parsed in different ways. For
example, the sentence “The man saw the girl with the telescope” means whether the man
saw the girl carrying a telescope or he saw her through his telescope?

• Semantic Ambiguity happens when a sentence contains an ambiguous word or phrase,
which itself can be misinterpreted. For example, the sentence “The car hit the pole while
it was moving” can be interpreted as either “The car, while moving, hit the pole” or “The
car hit the pole while the pole was moving”.

• Anaphoric Ambiguity arises due to the use of anaphora entities in discourse. For
example, “the horse ran up the hill. It was very steep. It soon got tired.” In which, the
anaphoric reference of It in two situations cause ambiguity.

• Pragmatic ambiguity arises when the statement is not specific. For example, the
sentence “I like you too” can be interpreted as “I like you just like you like me” or “I like
you just like someone else does”.

3 Definition

Natural Language Understanding (NLU) is a subtopic of NLP. It involves breaking down
the human language into a machine-readable format and making use of grammatical rules and
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common syntax to understand the meaning of text. NLU refers to how unstructured data is
rearranged so that machines may “understand” and analyze it.

The application of NLU are automated reasoning, reading comprehension, machine translation,
question answering, text categorization, voice-activation, archiving, and large-scale content anal-
ysis.

Task-Agnostic Problem in NLU

4 Tasks & Solutions

This section is to illustrate NLU’s potential directions of improvements and relevant necessary
concepts.

4.1 Word Level Analysis

Finite Automaton (FA) is an automaton having a finite number of states. Automaton is
defined as an abstract self-propelled computing device that follows a predetermined sequence
of operations automatically.

Deterministic Finite automation (DFA) is defined as the type of FA, where for every input
we can determine the state to which the machine will move. DFA has a finite number of states.

Non-deterministic Finite Automation (NDFA) is defined as the type of FA, where for
every input we cannot determine the state to which the machine will move and the machine
can move to more than one combination of the states. NDFA has a finite number of states.

Regular Expression (RE) is a sequence of characters that define a search pattern. In NLP,
RE helps to match/find other strings/sets of strings, using a specialized syntax held in a pattern.
RE has been used to search text in UNIX and in MS WORD in identical way.

RE requires two things, one is the pattern that we wish to search, the other is a corpus of text
from which we need to search. A RE can be defined as:

• ε is a RE and indicates that the language is having an empty string.

• φ is a RE and indicates that it is an empty language.

• If X and Y are REs, then their Concatenation, Union, and Kleen Closure are all REs.

• A string is a regular expression, if it is derived from above rules.

Regular Sets (RSs) represent the value of the RE. The properties of RSs are:

• If A is a RS, then the Complement, Reversal, and Closure of A are all RSs.

• If A and B are two RSs, then the Union, Intersection, Difference, and Concatenation of
A and B are all RSs.

FA is the theoretical foundation of computation. REs is a way of describing FA. FA, RSs, and
RGs are equivalent ways of describing regular languages.

Regular Grammar (RG) is a way to describe a regular language. It is a formal grammar
that can be right-regular or left-regular.
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Morphological Parsing is the task of recognizing and then breaking a word down into smaller
morphemes and producing linguistic structure for the word. For example, the word foxes can
be broken into two morphemes, fox and es. fox is a stem, a root of a given word. es is a affix,
a grammatical function to the root of a given word. Affix has four types: Prefixes, Suffixes,
Infixes, and Circumfixes. Both stem and affix are defined as Morpheme.

Word Order is decided by morphological parsing. The requirements for building a morpho-
logical parser are:

• Lexicon are the list of stems and affixes along with the syntax information.

• Morphotactics are the model of morpheme ordering of a word, which is to explain
which classes of morphemes follow other classes of morphemes. E.g., the English plural
morpheme always follows the noun rather than preceding it.

• Orthographic rules are used to model the changes in format while ordering a word.
E.g., the rule of converting y to ie for city.

4.2 Syntactic Parsing

The purpose of Syntactic Parsing is first to check the text for meaningfulness based on the rules
of formal grammar and then to draw exact meaning from the meaningful text.

Syntax is the set of rules, principles, and processes that govern the structure of sentence in a
given language. One basic description of the syntax of a sentence is a sequence of Subject, Verb,
and Object in a specific order. The variation of the sequence order in different languages lead
to a different syntax structure. The difference is caused by a complex clausal phrase structure
and is compatible with multiple derivations.

Parser is used to report and correct syntax error, create parse tree, create symbol table, and
produce intermediate representations. Top-down Parsing constructs the parse tree from the
start symbol and then transforms the start symbol to the input. Bottom-up Parsing starts
with the input symbol and constructs the parser tree up to the start symbol.

Syntactic Parser is the task of generating constituency or dependency trees from a sentence
depending upon the task for which inference is required. It is the process of analyzing the string
of symbols in natural language conforming to the rules of formal grammar.

Derivation here is a set of syntactic parsing rules. During parsing, we need to decide the
non-terminal state, which is replaced along with deciding the production rule. There are two
types of derivations: Left-most Derivation is scanning and replacing the sentential form of
an input from the left to right. Right-most Derivation is on the contrary.

Parse Tree is defined as the graphical depiction of a derivation. The start symbol of derivation
is the root of the parse tree. The leaf nodes are terminals and interior nodes are non-terminals.
In-order traversal will produce the original input string.

Grammar is essential to describe the syntactic structure of well-formed programs. A mathe-
matical model of grammar was given by Noam Chomsky in 1956. Noam Chomsky introduced
a Constituency Grammar (CG) based on the constituency relation, where all the related
frameworks view the sentence structure in terms of constituency relation. The basic clause
structure of it is understood in terms of noun phrase (NP) and verb phrase (VP).

Dependency Grammar (DG) introduced by Lucien Tesniere based on the dependency re-
lation, which is opposite to CG. In DG, words are connected to each other by directed links.
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The VP becomes the center of the clause structure. Every other syntactic units are connected
to the VP in terms of directed links. These syntactic units are called dependencies.

Context Free Grammar (CFG) is a notation for describing languages and a superset of RG.
CFG consists of a finite set of grammar rules containing a set of non-terminals (V), a set of
terminals (Σ), a set of productions (P), and a start symbol (S).

4.3 Semantic Parsing

Semantic Parsing is the task of converting a natural language utterance to a logical form, so
that a machine can understand the meaning of a natural language representation. It is a way of
extracting meaning of a representation. The application of Semantic Parsing includes machine
translation, question answering, and ontology induction.

Lexical Semantics is the first part of semantic parsing, which is the task of studying the
meaning of individual words. Lexical items include morphemes, words, compound words, and
phrases. Lexical semantics represents the relationship between lexical items. Semantic Parsing
focuses on larger chunks, on the other hand, lexical analysis is based on smaller token.

The steps of Lexical Semantics are first, classifying of lexical items; second, decomposing of
lexical items; and third, analyzing differences and similarities between various Lexical Seman-
tic. Accordingly, Semantic Parsing has two steps: First, doing Lexical Semantics, and second,
combining individual words to provide meaning of sentence.

The frame of semantic parsing has three steps: (1) decompose the sentence into lexical items;
(2) cluster those items and label those clusters; (3) predict predicate relations between clusters.
In which frames represent semantic representation of predicates, e.g. verbs. Clusters represent
arguments.

Semantic Parsing is inherently more complicated than Syntactic Parsing, because Semantic
Parsing is more about capturing the meaning of sentence rather than plain rule-based pattern
matching.

Shallow Semantic Parsing is known as slot-filling or frame semantic parsing. It has a theo-
retical basis of frame semantics. Slot-filling systems are mechanisms for identifying the frame
evoked by an utterance. Many architectures for slot-filling are variants of an encoder-decoder
model, by encoding an utterance into a vector and decoding that vector into a sequence of slot
labels.

Deep semantic parsing is known as compositional semantic parsing. It can parse arbitrary
compositional utterances, by converting them to a formal meaning representation language.
This is not doable by shallow semantic parsing. Deep semantic parsing model are either
based on defining a formal grammar for a chart parser, i.e. Cornell Semantic Parsing Frame-
work [2], Stanford University’s Semantic Parsing with Execution (SEMPRE)[5], and the Word
Alignment-based Semantic Parser (WASP)[86], or RNNs translating from a natural language
to a meaning representation language.

The datasets used for training deep semantic parsing models are two main classes: One is
used for question answering via knowledge base queries, i.e. Air Travel Information System
(ATIS)[27] (standard dataset); GeoQuery[89] (benchmark dataset); and Overnight[84] testing
how well semantic parsers adapt across multiple domains. The other is used for code generation,
i.e. Constructed linking Hearthstone card texts to Python snippets[44]; IFTTT dataset[61] us-
ing a specialized domain-specific language with short conditional commands; Django dataset[58]
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pairing Python snippets with English and Japanese pseudocode; and RoboCup dataset[37] pair-
ing English rules with their representations in a domain-specific language that can be understood
by virtual soccer-playing robots.

4.3.1 Models for Semantic Parsing

A list of language tasks:

• Syntactic Parser: Building constituency or dependency trees from a sentence.

• Semantic Parser: Mapping natural language text to formal representations.

• Semantic Parsing: Building a parse tree depending upon the specific given task.

• Semantic Role Labeling (SRL): Given the structure of the target representation. The
parsing would be done depending on a frame semantics.

• Sequence Labeling Problem (SLP) is to identify and label arguments (e.g., N, O, and
V) in each sentence according to the given marked predicates for each sentence.

• Formal Representation(FR) task is similar to a Machine Translation (MT) problem
translating between the natural and formal representations.

Solutions for specific task(s):

LSTM-based approach, i.e.A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-
based Semantic Role Labeling [48], takes advantage of the memory preservation property of
LSTMs. Vectors are obtained from each word by concatenating pre-trained embeddings (Word2Vec),
random embeddings, and randomly initialized POS embeddings. Predicate is (1-bit flag) marked
by the word vector in a particular training instance. Word’s context is obtained by fitting the
word vector into a bi-LSTM layer. Words are labeled based on a softmax classifier obtained by
the dot product of its hidden state with the predicate’s hidden state. Weight matrix parame-
terized on the row labeled r.

Graph Convolutional Network (GCN)-based approach, i.e.,Graph Convolutional Net-
works for Text Classification[87], has been used to represent the dependency tree for the sen-
tence. Which means that a GCN input layer encodes the sentence into an m ˆ n matrix based
on its dependency tree, such that each of the n nodes of the tree is represented as an m ˆ 1
vector. Once such a matrix has been obtained, we can perform convolutions on it.

One weakness of a one-layer GCN is that it can only capture information about its immediate
neighbor. However, this could be solved by stacking GCN layers, so that one can incorporate
higher degree neighborhoods.

GCNs and LSTMs are complementary. LSTMs capture long-term dependencies well but are
not able to represent syntax effectively. On the other hand, GCNs are built directly on top of
a syntactic-dependency tree so they capture syntax well, but one can only capture information
about its immediate neighbor. Therefore, using a GCN layer on top of the hidden states obtained
from a bi-LSTM layer would theoretically capture the best of both worlds. This hypothesis has
also been corroborated through experimental results.

Encoder-decoder model, i.e.Language to Logical Form with Neural Attention[16], can solve
both FR and SLP. An encoder converts the input sequence to a vector representation and a
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decoder obtains the target sequence from this vector. The encoder uses a bi-LSTM layer to
obtain the vector representation of the input sequence. The final hidden state is fed into the
decoder layer, which is again a bi-LSTM. The hidden states obtained from this layer is used to
predict the corresponding output tokens using a softmax function. Alternatively, we can have a
hierarchical decoder to account for the hierarchical structure of logical forms. For this purpose,
we introduce a non-terminal token to indicate the start of a sub-tree. To incorporate the tree
structure, we concatenate the hidden state of the parent non-terminal with every child. Finally
in the decoding step, using an attention layer where the context vector is a weighted sum over
the hidden vectors in the encoder to better utilize relevant information from the input sequence.

LSTM-based approach[48], GCN-based approach[87], and Encoder-decoder model[16] are su-
pervised approaches for SLP. Encoder-decoder model[16] is also for FR. However, those are
constrained by cost and availability of annotated data, especially since manually labeling se-
mantic parsing is a time-consuming process. Recent years there is a transition from using
statistical methods to generative models for NLP tasks, so next we would introduce some un-
supervised or semi-supervised approaches to address this constrains.

Generative models, i.e.A Bayesian Model for Unsupervised Semantic Parsing [72], which
makes use of statistical processes to model semantic parsing. Basically we get a semantic
frame from the PY process, and then generate the corresponding syntax from a Dirichlet pro-
cess. This is done recursively. For the root level parameters, a stick-breaking construction is
used. Below is the essence of the generative algorithm of Bayesian model:

• Obtain the semantic class for the root of the tree from the probability distribution, which
is a sample drawn from the distribution of semantic classes given by a hierarchical
Pitman-Yor (PY) process.

• Once the root is obtained, we call the function GenSemClass on this root.

• Since the current root only has a semantic class, we obtain its syntactic realization from a
distribution over all possible syntactic realizations, which is given as a Dirichlet Process
with the arguments as the base word and a prior. Essentially, the base word x is obtained
from a geometric distribution, and the subsequent words are obtained by computing the
conditional probability P py|xq, and the next word P pz|yq.

• For each argument type t, if the probability of having at least 1 argument of type t is
non-zero, we generate an argument of that type using function GenArgument, until that
probability becomes 0. The GenArgument function again computes the base argument
from the distribution of syntactic realizations, and then obtains the next semantic class
again from the hierarchical PY process.

• We then recursively call the GenSemClass function on this new class.

Next we would introduce some approaches in a neural framework for semantic parsing, i.e.
Transfer Learning for Neural Semantic Parsing[19] and Deep Multitask Learning for Semantic
Dependency Parsing[60].

Transfer Learning for Neural Semantic Parsing[19] uses sequence-to-sequence model de-
veloped for MT. The sentence is first encoded into an intermediate vector representation and
then decoded into an embedding representation for the parse tree. Popular encoders and de-
coders are stacked bidirectional LSTM layers with some attention mechanism. While reading
the output embedding at each step, the model has 2 options:
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A COPY-WRITE mechanism: the model has 2 options while reading the output embedding at
each step:

• COPY: This copies one symbol from the input to the output.

• WRITE: This selects one symbol from the vocabulary of all possible outputs.

A final softmax layer generates a probability distribution over both of these choices: the proba-
bility of choosing WRITE at any step is proportional to an exponential over the output vector
at that step; and the probability of choosing COPY is proportional to an exponential over a
non-linear function of the intermediate representation and the output vector, i.e., the encoded
and decoded vectors.

Furthermore there are 3 ways to extend this transfer learning method to a multi-task setting:

• One-to-many: One shared encoder; Each task has its own decoder and attention param-
eters.

• One-to-one: One shared entire sequence with an added token at the beginning to identify
the task.

• One-to-shareMany: This also has a shared encoder and decoder, but the final layer is
independent for each task. A large number of parameters can be shared among tasks while
still keeping them sufficiently distinct. Empirically, this model was found to perform best
among the three.

Deep Multitask Learning for Semantic Dependency Parsing[60] Given sentence x and
a set of all possible semantic graphs for that sentence Y pxq, we want to compute: the scoring
function S is a sum of local scores, each of which is itself a parameterized function of some local
feature - first order logic: Predicate, Unlabeled arc, and Labeled arc.

For the 2 input words, we first obtain vectors using a bi-LSTM layer, and these are then fed
into multi-layer perceptrons (MLPs) corresponding to each of the three local features. Each
first-order structure is itself associated with a vector (shown in red). The scoring function sppq

is simply the dot product of the MLPs output and the first-order vector. The cost function is
a max-margin objective with a regularization parameter and a sum over individual losses.

Once this basic architecture is in place, there are two methods to extend it with transfer learning.
The task here are three different forms in semantic dependency parsing including Delph-in MRS,
Predicate-Argument Structure, and Prague Semantic Dependencies, so that each of these require
a different variation of the output form. In the first method, the representation is shared among
all tasks but the scoring is done separately. This further has variants wherein we can either
have a single common bi-LSTM for all tasks or a concatenation of independent and common
layers. The second method describes a joint technique to perform representation and inference
learning across all the tasks simultaneously. The description is mathematically involved but
intuitively simple, since we are just expressing the inner product in the scoring function in a
higher dimension.

4.4 Meaning Representation

Semantic Parsing creates a representation of the meaning of a sentence. The following compo-
nents of Semantic System play an important role in word representation.
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Figure 1: Illustration of the architecture of the basic model: Deep Multitask Learning for
Semantic Dependency Parsing. i and j denote the indices of tokens in the given sentence. The
figure depicts single-layer BiLSTM and MLPs, while in practice we use two layers for both [60]

• Entities represent particular individuals. E.g., Haryana, India, and Ram.

• Concepts represent the general category of individuals. E.g., animal and person.

• Relations represent the relationship between entities and concepts. E.g., Ram is a person.

• Predicates represent the verb structures. E.g., semantic roles and case grammar.

4.4.1 Approaches for Meaning Representations

Some approaches that Semantic Parsing uses for meaning representations are First order
predicate logic (FOPL), Semantic Nets, Frames, Conceptual Dependency (CD), Rule-based
architecture, Case Grammar, and Conceptual Graphs. The reasons of meaning representations
are that we need to link the linguistic elements to non-linguistic elements, make representation
variety at lexical level, and then use it for reasoning.

4.5 Word Sense Disambiguation

Lexical, syntactic, or semantic ambiguity, is one of the very first problem that any NLP system
faces. Part-of-speech (POS) taggers with high level of accuracy can solve Word’s syntactic
ambiguity.

Word sense disambiguation (WSD) means resolving semantic ambiguity, which is harder to be
solved than syntactic ambiguity. An example of WSD is

• I can hear bass sound. ( bass means frequency)

• He likes to eat grilled bass. (bass means fish)
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4.5.1 Methods to Word Sense Disambiguation

Knowledge-based Methods rely on dictionaries, treasures, and lexical knowledge base, in-
stead of corpora evidences. The Lesk method is the seminal dictionary-based method, which
was introduced by Micheal Lesk in 1986. In 2000, Kilgarriff and Rosensweig further simplified
it as “measure overlap between sense definitions of word and the set of words in surrounding
sentence or paragraph”, which means identifying the correct sense for one word at a time.

Supervised learning Methods is a machine learning method using sense-annotated corpora
to train. The context is represented as a set of “features” of the words including the informa-
tion about the surrounding words also. Assume the context can provide enough evidence to
disambiguate the sense, so that the words knowledge and reasoning are unnecessary. The most
successful approaches are support vector machine and memory-based learning, those rely
on substantial amount of and expensive manually sense-tagged corpora.

Semi-supervised learning Methods are widely used, since the lack of training corpus,
i.e.bootstrapping from seed data. It uses very small amount of annotated text(labeled
data) and large amount of plain unannotated text(unlabeled data).

Unsupervised learning Methods are used to clustering similar context, i.e., word sense
induction and word sense discrimination. For example clustering similar context based on word
occurrences. This methods assume that similar senses occur in similar contexts. Unsupervised
learning have great potential to overcome the knowledge acquisition bottleneck due to non-
dependency on manual efforts.

Evaluation

To evaluate the WSD, two inputs are required. One is dictionary, which is used to specify the
senses to be disambiguated. The other is test corpus, which has the target correct senses, with
two possible types. One is lexical sample for small sample of words, the other is all-words
for a piece of text.

Application

WSD is widely applied in almost every application of language technology. Machine Trans-
lation (MT) is the most obvious application of WSD. Lexical choice for the words that have
distinct translations for different senses, is done by WSD. The senses in MT are represented as
words in the target language. Most of the MT systems do not use explicit WSD module. As
like MT, current Information Retrieval (IR) systems do not explicitly use WSD module.
They rely on the concept that user would type enough context in the query to only retrieve
relevant documents. In Information Extraction (IE) WSD is necessary to do accurate anal-
ysis of text. For example, WSD helps medical intelligent system to flag “illegal drugs” rather
than “medical drugs”. In addition, WSD and lexicography can work together in loop since
WSD is a supplement of lexicography. WSD provides rough empirical sense groupings and
statistically significant contextual indicators of sense, on the other hand, modern lexicography
is corpus-based.

Difficulties

There are four main difficulties in WSD. First, different senses can be very closely related, so
that it is hard to decide the sense. Second, completely different algorithm is needed for different
applications, i.e. MT takes the form of target word selection and IR does not require a form
of target word. Third, words cannot be easily divided into discrete sub-meanings. Fourth,
inter-judge variance problem, which means WSD systems are generally tested by having their
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results on a task compared against the task of human beings.

5 Core Language Models

5.1 Bayesian Theorem

This section is a review of previous work and background information of Bayes Theorem.

Disjoint: For every (possibly infinite) collection of disjoint sets Ak, k “ 1, 2, 3..., we have

PrYkě1Aks “
ÿ

kě1

PrAks.

Independent events: Events happening (or not happening) does not depend on one another,
we have

PpE1 X E2q “ PpE1qPpE2q.

Conditional Probability: For any two events A and B with PpBq ą 0, the conditional
probability of A given that B has occurred is:

PrA|Bs “
PrA X Bs

PrBs
.

Bayes Theorem: Let A1, A2,..., Ak, be k mutually exclusive and exhaustive events with

PrAis ą 0 for i “ 1, 2, ..., k. Then for any other event B for which PrBs ą 0,

PrAj |Bs “
PrB|AjsPrAjs

ř

i PrB|AisPrAis
.

Bayes Theorem example:Conditional on θ, X „ Poissonpθq, for k “ 0, 1, 2, 3...,

PrX “ k|θs “ e´θ θ
k

k!
.

Bayesian statistical principles: likelihood, prior, posterior.

Given the likelihood, i.e. the pdf/pmf of X given θ: rX|θs „ fpx; θq, for x P X, θ P Θ.

Given the pdf/pmf prior on the parameter space: rθs „ hpθq, for θ P Θ.

Then based on Bayes Theorem, the pdf/pmf posterior: rθ|Xs “
fpx;θqhpθq

ş

θ fpx;θqhpθqdθ
.

Proof :

Joint pdf/pmf of pX, θq: fpx; θqhpθq.

Marginal pdf/pmf of X: mpxq “
ş

θ fpx; θqhpθqdθ
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Thus, the posterior:

rθ|Xs “
fpx; θqhpθq

ş

θ fpx; θqhpθqdθ

“
fpx; θqhpθq

mpxq

9fpx; θqhpθq.

Notice:

• The posterior distribution [θ|X] leads to many AII/ML/Statistical techniques.

• The posterior distribution can be used for point estimation, interval estimation,
hypothesis testing, and much more.

• The posterior [θ|X] is very challenging to obtain.

• The choice of the prior is critical, especially in small samples or for high dimensional
parameters.

The prior is a conjugate prior, if the prior and the posterior are the same brand of pdf/pmf
distributions (but with different parameters).

conjugate prior example: Given rX|θs „ Binomialpn, θq and rXs „ Betapα, βq, then rX|θs „

Betapα ` X,β ` n ´ Xq. Proof :

rX|θs9

!

ˆ

n

X

˙

θXp1 ´ θqn´X
)!

rpα ` βq

rpαq ` rpβq
θα´1p1 ´ θqβ´1

)

9θα`X´1p1 ´ θqβ`n´X´1

Therefore, this can now be seen ass a Betapα ` X,β ` n ´ Xq distribution.

Bayesian point estimators are obtained by minimizing
ş

θ Lpθ, T pXqqrθ;Xsdθ, for some loss
function Lpθ, T pXqq. All Bayes estimators are functions of the posterior distribution.

Posterior mean:
ş

θ θrθ;Xsdθ, is the Bayes estimate when Lpθ, T pXqq “ pθ ´ T pXqq2.

Posterior median:
ş

θ θrθ;Xsdθ, is the Bayes estimate when Lpθ, T pXqq “ |θ ´ T pXq|.

MAP estimator:
ş

θ θrθ;Xsdθ, is the point where the posterior is maximized (very similar to
MLE). This corresponds to the mode of the posterior distribution.

Bayesian interval estimation are comparable to confidence intervals for non-Bayesian statis-
tics. There are intervals that contains θ with apre-specified probability.

• HDR/HPD regions: Regions with high posterior pdf/pmf. (These can be hard to obtain
if the posterior pdf is not unimodal.)

• Credible interval: An interval having the correct coverage. (Usually, we want short credible
intervals.)

5.1.1 Bayesian Deep Learning

Bayesian deep learning[81] is a probabilistic framework to unify modern deep learning and
probabilistic graphical models.

14



Bayesian deep learning in a broader sense (BDL) is the combination of a probabilis-
tic neural network and a probabilistic graphical model. This combination enables end-to-end
learning and inference. Bayesian deep learning in a narrower sense is the Bayesian version of
probabilistic neural networks (BNNs), which is a component of BDL. (In this report, the term
BDL refers to BDL in a broader sense.)

The advantage of BDL compared with traditional deep neural networks is that BDL including
both deep neural networks and probabilistic graphical models, so that it provide a unified deep
learning framework that can supports all four functionalities listed below:

• conditional inference;

• causal inference;

• logic deduction; and

• uncertainty modeling.

However, a traditional deep neural network, even though borrow some ideas from probabilistic
graphical models, one can only enable a subset of the four functionalities.

BNNs is proposed by David MacKay in 1992 [46]. In 2014, Collaborative Deep Learning (CDL)
[79], a concrete application of the BDL framework to recommender systems, significantly im-
proved recommender systems’ performance. In 2015, CDL has been generalized into a BDL
framework [80]. So far a diverse and a large amount of models across various domains are pro-
posed under this BDL framework. Table 1 is a table of selected variations under the framework
of BDL[81], which is useful for the improvement of systems’ NLU abilities.

To better understand the internal structure of BDL, we need to be familiar with the key concepts
of BDL: one framework, two components, and three variable sets.

• One framework: The BDL general framework.

• Two components:

Perception components: probabilistic neural networks, eg. Restricted Boltzmann Ma-
chine (RBM), Probabilistic Autoencoder [79], VAE [34], and Natural-Parameter Network
[77].

Task-specific components: traditional (static) Bayesian networks, deep Bayesian net-
works [82], stochastic processes [30], and dynamic Bayesian network[55].

• Three variable sets:

Perception variables: variables inside the perception component. These variables

are drawn from relatively simple distributions (e.g., Dirac delta distributions or Gaussian
distributions), and the graph among them is usually simple as well. This is to ensure
low computational complexity; otherwise multiple layers of perception variables will

be computationally prohibitive. This is actually the reason why we need probabilistic
neural networks here, since they can be efficiently learned via backpropagation (BP).

Hinge variables: variables inside the task-specific component with direct connections

to the perception component. Their job is to connect these two components and

facilitate bidirectional, quickly communicate between them.
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Table 1: Summary of BDL Models with Different Variance Types (ZV: Zero-Variance, HV:
Hyper-Variance, LV: Learnable-Variance)

Application Models Variance

Recommender Systems Collaborative Deep Learning(CDL) [79] HV
Bayesian CDL [79] HV

Marginalized CDL [40] LV
Symmetric CDL [40] LV

Collaborative Deep Ranking [88] HV
Collaborative Knowledge Base Embedding [90] HV

Collaborative Recurrent AE [76] HV
Collaborative Variational Autoencoders [41] HV

Topic Models Relational SDAE HV
Deep Poisson Factor Analysis

with Sigmoid Belief Networks [22] ZV
Deep Poisson Factor Analysis

with Restricted Boltzmann Machine [22] ZV
Deep Latent Dirichlet Allocation [12] LV

Dirichlet Belief Networks [92] LV

NLP Sequence to Better Sequence [53] LV
Quantifiable Sequence Editing [43] LV

Link Prediction Relational Deep Learning [78] LV
Graphite [24] LV

Deep Generative Latent Feature Relational Model[49] LV

Zero-Variance (ZV): Assume no uncertainty during the information exchange between the two

components.
Hyper-Variance (HV): Assume that uncertainty during the information exchange is defined

through hyperparameters.
Learnable Variance (LV): Using learnable parameters to represent uncertainty during the in-

formation exchange.

Task variables: variables inside the task-specific component without direct connec-

tions to the perception component. In contrast to perception variables, task vari-

ables can be drawn from various complex distributions and the graph connecting them
can be more complicated. This is to better describe the complex conditional dependencies
among the task variables.

5.2 Topic Modeling

Topic modeling is to extract thematic information from large corpus of documents. A long
line of work on topic modeling sets up the basic structure for topic models, starting from
probabilistic latent semantic indexing (pLSI), followed by Latent Dirichlet Allocation(LDA),
Correlated Topic Models(CTM), Pachinko allocation and many others.
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According to these works, each topic is a probability distribution over words and each document
is a probability distribution over topics. These models also has the “bag-of-words” assumptions,
which means that the ordering of the words is not crucial in determining the topics. Hence words
in a document are generated independently at random. To generate a word, first generate its
topic according to the document-topic distribution, then pick a word from the corresponding
topic-word distribution.

The process of generation a word can be summarized as a matrix product. The latent variable
are the document-topic distributions. The linear transform is constructed from the topic-word
distributions. That is, the (i,j)-th entry of matrix W P Rrˆm corresponds to the probability that
document j generates topic i. The (i,j)-th entry of A P Rnˆr corresponds to the probability that
the topic i generates the word l. The (i,j)-th entry of product AW is exactly the probability
that the topic i generates the word l. The observation function f samples N words according
to the distribution AWj .

Therefore, we have the following description of topic modeling in General Matrix Factorization
(GMF) and Non-negative Matrix Factorization (NMF) frameworks.

GMF framework

Given: an unknown topic matrix A with non-negative entries that is dimension n ˆ r, and a
stochastic generated unknown matrix W that is dimension rˆm. Each column of AW is viewed
as a probability distribution on rows, and for each column we are given N ! n i.i.d samples
from the associated distribution.

Goal: Reconstruct A and parameters of the generating distribution for W .

Directly analyzing the GMF problem for topic modeling is not easy because much information
is lost in the sampling process.

NMF framework

Given: Matrix M “ AW ` noise, where matrices A P Rnˆr and W P Rrˆm have non-negative
entries.

Goal: Find A,W .

A natural assumption called “separability” simplifies the problem, and gives a polynomial time
algorithm when the instance is separable.

Separability Assumption: A non-negative factorization M “ AW is separable if for each
column i of A, there is some row rpiq of A that has a single nonzero entry and this entry is in
the i-th column. Under this assumption, the NMF problem has a nice geometric interpretation
that leads to polynomial time algorithms.

For topic modeling the separability assumption naturally translates to the “anchor words as-
sumption”. Anchor words assumption: Every topic has a word with probability at least p
in that topic, and has probability 0 in all other topics. This assumption greatly simplifies the
learning task. Even though we get samples from AW which from a very coarse approximation
of the product, we show the noise can be reduced.

However, the disadvantage of the above algorithm is: (1) the algorithm is very slow in practice,
because it requires solving many linear programs. (2) the algorithm is unstable and produce
negative entries, because the recovery algorithm relies on matrix inversion.

To address those problems in the given two new algorithm bellow, we (1) replace matrix inversion
with a new gradient-based inference method by presenting a simple probabilistic interpretation
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of topic recovery given anchor words. (2) the new algorithm produces results run orders of
magnitude faster and is comparable to the best MCMC implementations.

Algorithm 1 High Level Algorithm
Input:Textual corpus D, Number of anchors K, Tolerance parameters ϵa ϵb ą 0.
Output:Word-topic matrix A, topic-topic matrix R.

1: Q Ð Word Co-occurences (D)
2: From tQ1,Q2, ...QVu, the normalized rows of Q.
3: S Ð FastAnchorWords(tQ1,Q2, ...QVu, K, ϵa)
4: A,R Ð RecoverKL(Q,S, ϵb) (Algorithm 2)
5: return A,R

Algorithm 2 RecoverKL
Input: Matrix Q, Set of anchor words S, Tolerance parameters ϵ.
Output:Matrix A,R

1: Normalize the rows of Q to form Q
2: Store the normalization constants pw “ Q1
3: Qsk is the row of Q for the kth anchor word
4: for i = 1,..., V do
5: Solve Ci “ arg minCi

DKL(Qi }
ř

k P SCi,kQsk )
6: Subject to:

ř

kCi,k “ 1 and Ci,k ě 0
7: With tolerance: ϵ
8: A

1
= diagppwqC

9: Normalize the columns of A
1
to form A.

10: R “ A˚ Q A˚T

11: return A,R

5.3 Multi-Task learning & Meta-Learning

Standard computer vision used hand-designed features, e.g., HOG, DPM, and SVM. Modern
computer vision used end-to-end training. Deep learning allows us to handle unstructured
inputs, e.g., pixels, language, sensor readings, etc., without hand-engineering features, with less
domain knowledge.

In deep learning for object classification, the AlexNet reduced the error rate to less than 0.2
in 2012, which is a great improvement. Also from then on, other deep learning models grad-
uate achieved or exceeded the state-of-the-art score. Deep learning for machine translation
also transformed from Phrase-based machine translation (PBMT) to Google’s neural machine
translation (GNMT) in 2016.

However, those models are environmental-oriented or task-oriented. That is to say that we
cannot use a well trained model to solve for newly emergent task.

So deep learning technologies have been used to train on large and diverse data to generate
large models in order to achieve broad generalization, e.g., GPT-2, Transformer, imagenet,
etc. However, if we don’t have a large dataset, for example, we don’t have enough data for
task-agnostic problem, then it is impractical to learn from scratch, e.g., for each disease, each
language, each person, etc.

Another thing is the data structure, what if we have a dataset which has a long tail instead of
normal distribution or Gaussian distribution? This case could happen in the case that objects
encountered interactions with people.

To quickly learn something new, we could leverage prior experience using few-shot learning.

So in order to solve for problems illustrated above including a general-purpose AI system,
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encountering data limitations, unforeseen data structures, and quickly learn something new,
multi-task learning is one way to solve.

Task Definition:

Dataset D and Lass function L Ñ model fθ.

Different tasks can vary based on: different objects, different people, different objectives, dif-
ferent lighting conditions, different words, different languages, etc.

Problem Definition:

Multi-task learning problem: Learn all of the tasks more quickly or more proficiently than
learning them independently.

Meta-Learning problem: Given data/experience on previous tasks, learn a new task quickly
and/or more proficiently.

Domain adaptation: In some ways it is a form of transfer learning. Assume the task domain
might be out of distribution from what you are seeing during training.

Doesn’t a multi-task learning reduce to single-task learning?

D “
ď

Di, L “
ď

Li

Yes, but we can do better since we know that they come from different domain of tasks. The ap-
plication of multi-task learning are multilingual machine translation, one-shot imitation learning
from humans, multi-domain learning for sim2real transfer, YouTube recommendation (multi-
task and multi-objective systems developing algorithms that can handle multiple competing
objectives).

5.3.1 Multi-Task Learning

Models training

A general deterministic function: fθpy|xq, where θ represents the weight, the neural network
producing a distribution over output y given the input x.

Single-task learning(supervised): D “ tpx, yqku, a dataset of many input and output pairs.

Typical loss: negative log likelihood: L pθ,Dq “ ´Epx,yq„D rlogfθpy|xqs. We would like to
minimize the loss functions minθL pθ,Dq with respect to the parameters.

A task: T fi tpipxq, pipy|xq,Liu, where pipxq is the distribution over the inputs, Pipy|xq is the
distribution over the labels given the inputs and a loss function. So these two distribution p
are correspond to the true data generating distributions, where we do not access to.

Corresponding datasets: Di (as shorthand for D train
i ) and D test

i .

Multi-task classification: Li same across all tasks. e.g. the cross entropy loss. But the
input may vary across different tasks. e.g. per-language handwriting recognition, personalized
spam filter.

Multi-label learning: Li and pipXq are same across all tasks. The task may make predictions
for different labels. e.g. CelebA attribute recognition, scene understanding(Ltot “ wdepthLdepth`

wkptLkpt ` wnormalsLnormals).

Li may vary across tasks. There are two settings this would happen. One setting maybe one
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task corresponds to predicting a discrete variable, whereas another one corresponds to predicting
a continuous variable. So that one might correspond to a cross-entropy loss function, whereas
another might correspond to mean squared error. Another setting is when we care more about
one task than another task. So that we may have a loss function weight corresponding to one
task that is higher than the weight of another task.

Sometimes we have fθpy|x, ziq e.g., one-hot encoding of the task index or, meta-data

• personalization: user features/attributes

• language description of the task

• formal specifications of the task

Objective: minθ
řT

i“1 Lipθ,Diq

A model decision and an algorithm decision: How should we condition on zi? How to optimize
objective?

Conditioning on the task Let’s assume zi is the task index. Question: How to condition on
zi in neural network models in order to share as little as possible between different tasks?

Answer: To have separate networks for each tasks, each of them have completely separate
weights. Each tasks corresponding to multiplicative gating y “

ř

j 1pzi “ jqyj , so that each
tasks independently trained within a single network with no shared parameters (weights) across
tasks.

The other extreme Concatenate zi with input and/or activation, all parameters are shared
except the parameters directly following zi.

An alternative view on the Multi-Task Objective:

Split theta into shared parameters θsh and task-specific parameters θi.

Then, our objective is: minθsh,θ1,...,θT
řT

i“1 Liptθsh, θiu,Diq

Choosing how to condition on zi equivalent to choosing how where to share parameters.

Conditioning: Some Common Choices

• Concatenation-based conditioning concatenates the conditioning representation to the
input. The result is passed through a linear layer to produce the output.

• Conditional biasing first maps the conditioning representation to a bias vector. The
bias vector is then added to the input.

• Multi-head architecture. Input first passes through the shared layers and then passes
through the task-specific layers.

• Multiplicative conditioning. Conditional scaling first maps the conditioning representa-
tion to a scaling vector.

Concatenation-based conditioning and Conditional biasing can work together. Why might mul-
tiplicative conditioning be a good idea? First, it is more expressive than additive conditioning.
Second, multiplicative gating is more naturally represented by multiplicative conditioning. sim-
ilarly, to choose a specific part of the network for different tasks, multiplicative conditioning

20



performed better than multi-head architecture. Multiplicative conditioning generalizes inde-
pendent networks and independent heads.

Conditioning: More Complex Choices More complex architecture include various modules,
attention, components, and different gating mechanisms. For example, Cross-Stitch Networks,
Multi-Task Attention Network, Deep Relation Networks, and Sluice Networks.

However, these design decisions are like neural network architecture tuning: problem dependent,
largely guided by intuition or knowledge of the problem, currently more of an art than a science.

To Optimizing the objective minθ
řT

i“1 Lipθ,Diq, basic version are:

• Sample mini-batch of tasks B „ tTiu

• Sample mini-batch data points for each tasks Db
i „ Di

• Compute loss on the mini-batch: L̂ pθ,Bq “
ř

TkPB Lkpθ,Db
kq

• Back propagate loss to compute gradient ∇θL̂

• Apply gradient with neural net optimizer (e.g. Aham)

Note: This ensures that tasks are sampled uniformly, regardless of data quantities.

Tip: for regression problems, make sure your task labels are on the same scale!

Challenges

• Challenge1: Negative transfer. Solution: sometimes independent networks work the best.
Reasons1: optimization challenges - caused by cross-task interference; tasks may learn
at different rates. Reason2: limited representational capacity - multi-task networks often
need to be much large than their single-task counterparts. Alternative Solution1: If having
negative transfer, share less cross tasks: binary decision plus ”Soft parameter sharing”:

minθsh,θ1,...,θT

T
ÿ

i“1

Liptθsh, θiu,Diq `

T
ÿ

i1“1

||θt ´ θt
1

||.

The benefit of it is that it allows for more fluid degrees of parameter sharing. But the
downside is that when thinking about algorithm, we need to tune yet another set of design
decision/hyper parameters.

• Challenge2: Overfitting. Reason1: we may not share enough parameters. Solution: shar-
ing more, so that Multi-task learning would be equivalent to a form of regularization.

Case study of real-word multi-task learning

Recommending What Video to Watch Next: A Multitask Ranking System Goal:
Make recommendations for YouTube. Conflicting objectives: videos that users will rate highly;
videos that users will share; videos that users will watch.

Implicit bias caused by feedback - user may have watched it because it was recommended.

Framework of the case

The Ranking Problem
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The Architecture

Problem

Solution

The Architecture Set-up

Results

5.3.2 Meta-Learning

There are two ways to view meta-learning algorithms: Mechanistic view and Probabilistic view.

Mechanistic view:

• Deep neural network model that can read in an entire dataset and make predictions for
new data points.

• Training this network uses a meta-dataset(a dataset of datasets, each for a different task),
which itself consists of many datasets, each for a different task.

• This view makes it easier to implement meta-learning algorithms.

Probabilistic view:

• Extract prior information from a set of (meta-training) tasks that allows efficient learning
of new tasks.

• Learning a new task uses this prior and (small) training set to infer most likely posterior.

• This view makes it easier to understand meta-learning algorithms

Problem Definition

Supervised learning:

arg max
ϕ

logpϕ|Dq (1)

“ arg max
ϕ

logpD|ϕq ` logppϕq (2)

“ arg max
ϕ

ÿ

i

logppyi|xi, ϕq ` logppϕq. (3)

D “ tpx1, y1q, ..., pxk, ykqu, where input x1, ..., xk and y1, ..., yk are labels, D is training data, ϕ
is model parameters, and ppD|ϕq is data likelihood, logppϕq is weight decay.

What is wrong with this? The most powerful models typically require large amounts of labeled
data. Labeled data for some tasks may be very limited.

The Meta-Learning Problem

arg maxϕ logpϕ|DqD “ tpx1, y1q, ..., pxk, ykqu
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arg max
ϕ

logpϕ|Dq D “ tpx1, y1q, ..., pxk, ykqu

can we incorporate additional data? Dmeta´train “ tD1, ..., Dnu

arg max
ϕ

logpϕ|D,Dmeta´trainq Di “ tpxi1, y
i
1q, ..., pxik, y

i
kqu

What if we do not want to keep Dmeta´train around forever?

Meta-learning can bee viewed as a process of learning a set of meta-parameters θ: ppθ|Dmeta´trainq,
where θ summarizes meta-training data such that thee problem could be solved quickly. The
dataset is defined as Dmeta´train “ tpDtr

1 , Dts
1 q, ..., pDtr

n , Dts
n qu, where Dtr

i “ tpxi1, y
i
1q, ..., pxik, y

i
kqu

and Dts
i “ tpxi1, y

i
1q, ..., pxil, y

i
lqu. So meta-learning is trying to maximize the likelihood of the

set of meta-parameters: θ˚ “ arg maxθ log ppθ|Dmeta´trainq.

The adaptation process is adapting those parameters to compute the set of parameters ϕ that
can solve a new task given a training dataset for that task and the meta-parameters that we
just learned above. So the adaptation function is defined as: ϕ˚ “ arg maxϕ log ppϕ|Dtr, θ˚q.
For short, this function could be written as: ϕ˚ “ fθ˚pDtrq.

So that the meta-training process is trying to optimize the prior parameters such that adaptation
leads to good performance.

To evaluate a meta-learning algorithm, the dataset used for meta-learning is proposed to be
used as few-shot discriminative and few-shot generative problems. Initial few-shot learning
approaches with Bayesian models, non-parametrics. Other datasets used for few-shot image
recognition: Minilmagenet, CIFAR, CUB, CelebA, etc.

Few-shot learning problem: 5-way, 1-shot image classification means 5-classes, 1-example per
class. Which means that given one example of five classes to classify new examples. Few-shot
learning could be seen as a subset of meta-learning.

The Mechanistic View - Supervised learning v.s. Meta-Supervised learning

Supervised learning Meta-Supervised learning

Inputs
Outputs
Data

x fpx; θq

Dtr “ tpx, yq1:ku fpDtr, xtest; θq

D “ tpx, yqiu Dmeta´train “ tDiu, Di : tpx, yqju

k means k input output pairs for a k-shot learning problem. In order to make predictions about
new test data point Xtest

Meta-learning reduces the problem to the design and optimization of f . The assumption is that
the distribution of training and testing set is the same.

General recipe

How to design a meta-learning algorithm? First, choose a form of ppϕi|D
tr
i , θq. Second, choose

how to optimize θ with respect to max-likelihood objective using Dmeta´train. Can we treat
ppϕi|D

tr
i , θq as an inference problem? Neural networks are good at inference.

Black-Box Adaptation Key idea: Train a neural network to represent ppϕi|D
tr
i , θ. For now,

Use deterministic (point estimate) ϕi “ fθpDtr
i q

Train with standard supervised learning: maxθ
ř

Ti

ř

px,yq„Dtest
i

log gϕipy|xq, where Lpϕi, D
test
i q “

ř

px,yq„Dtest
i

log gϕipy|xq.
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So that maxθ
ř

Ti

ř

px,yq„Dtest
i

log gϕipy|xq “ maxθ
ř

Ti
Lpϕi, D

test
i q.

• Sample task Ti (or mini batch of tasks)

• Sample disjoint datasets Dtr
i , Dtest

i from Di

• Compute ϕi Ð fθpDtr
i q

• Update θ using ∇θL pϕi, D
test
i q

A Example

The complete Meta-Learning Optimization

Some Meta-Learning terminology

Closely related problem settings

General recipe of meta-learning algorithms

Black-box adaptation approaches

Motivation: If we want to infer all of the parameters of a neural network, having a neural
network to output them is not a scalable way to do that.

Bayesian Meta-learning

5.3.3 GPT-3

Human naturally do not require large supervised datasets to learn most language tasks. A brief
directive in natural language or at most a tiny number of demonstrations is sufficient to enable
a human to perform a new task to a reasonable degree of competence. One potential way to
address these issues is Meta-Learning. While training, the model develops a broad set of skills
and pattern recognition abilities. While inferring, the model uses those abilities to recognize or
adapt desired task.

Previously, language pre-training model[63] attempts to fulfill this by using the text input as
a/a few task demonstration(s) to condition the model and then predicting what comes next
to complete the further instances of the task. Another potential way to address these issues
is increasing the capacity of transformer language models [62], [15], [63], [69], [64], and [52].
This has improved in text synthesis and/or performances of NLP tasks. In the future it is
plausible that the language pre-training model [63] with scale [33] could have similarly strong
performance as Meta-Learning, since the language pre-training model can absorb many skills
and tasks within its parameters.

Task-agnostic cannot be solved through current benchmark solution by fine-tuning a pre-training
model on a large corpus of text because of the limited amount of texts samples. However,
training GPT-3 [7] - an autoregressive language model with 175 billion parameters without any
gradient updates or fine-tuning - can achieve state-of-the-art performance of prior fine-tuning
approaches by testing its performance in the few-shot setting, which is tasks and few-shot
demonstrations specified purely via text interaction with the model.

The model architecture of GPT-3 is similar with GPT-2 [63], including the modified initializa-
tion, pre-normalization, and reversible tokenization. The only exception is that using alternating
dense and locally banded sparse attention patterns in the layers of the transformer, similar to
the Sparse Transformer [11].
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GPT-3 achieves strong performance on many NLP datasets, such as, translation, question-
answering, cloze tasks, and several tasks that require rapid reasoning or domain adaptation
including unscrambling words, performing arithmetic, and using novel words in a sentence after
seeing them defined only once. Specifically, for each task, GPT-3 is evaluated under three
conditions: (a) few-shot learning allowing 10 to 100 demonstrations fit into the model’s context
window; (b) one-shot learning allowing only one demonstration; (c) zero-shot learning allowing
no demonstrations and only one instruction in natural language is given to the model.

Compared with zero-shot and one-shot, few-shot performance is more apparently well as model
capacity goes more larger. That is to say larger models are more proficient meta-learners.

In addition, GPT-3 can generate synthetic new articles which is hard to distinguish from human-
generated articles. Data contamination - a problem of potentially training test datasets samples
while training high capacity models on datasets such as Common Crawl, since such test samples
often exist on the web - on most datasets has a minimal effect on GPT-3’s performance.

However, few-shot learning, even at the scale of GPT-3, facing methodological issues, so that
it cannot perform well on datasets of some tasks including natural language inference ANLI
dataset, reading comprehension datasets RACE and QuAC. Those are further directions of
study which needs highly attention.

5.4 Mixture Models

A Mixture Models is a collection of distributions D1, ..., Dk and weights w1, ...wk. To sample
from a mixture model, we draw i with probability wi, where i P t1, ..., ku, and then draw a
random sample from Di, where i P t1, ..., ku. Thus, each cluster in the data corresponds to a
different distribution Di in the mixture, and the weights wi correspond to the fraction of points
from each cluster in the entire dataset.

In the problem of learning mixture models, we are given samples from a mixture model, and
our goal is to (a) learning the parameters of the distributions Di and (b) classify each sample,
according to its source distribution.

The distribution in the mixture are very close together in space, then the mixture will be hard
to learn. A solution separation condition[14] is first introduced, which promises to ensure
that every pair of distributions in the mixture are far apart. Given a mixture with a certain
separation, the goal of the algorithm designer is to learn the correct clustering of the data.

Separation is defined as the minimum distance between the means of any pairs of distributions
in the mixture, as a function of a standard deviation.

Examples of mixture models include Random Projections[14]; EM[13]; Distance threshold-
ing[67]; PCA Projections[74][32][1]; Canonical Correlations[9]; and Isotropic PCA[8]. (This
section will be further expended.)

Learning Mixtures with No Separation Condition, i.e. in the absence of a lower bound
on the separation, the problem of learning mixture models is considered to be quite hard, when
there are more than two clusters. In this case, one is again samples from a mixture model, and
the goal is to produce a mixture which has KL-Divergence at most ϵ to the true mixture.

5.5 Attention Mechanism

Transformer[73] is a model architecture based entirely on an attention mechanism.
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Transformer is a new simple network architecture restricted to NLP, based solely on Atten-
tion layers, which are CNNs that capture the relevance of any sequence element to each other,
dispensing with recurrence and convolutions entirely, which previously dominant sequence trans-
duction models. This achieved a better state-of-the-art results and markedly faster than previ-
ous RNN models.

The combination and application of Attention mechanism is very powerful. The combination
of techniques in MobileNets[29], which achieves more efficient models, and transformers, which
achieves more efficient training, could achieve efficient training and inference. GPT-2, GPT-3,
and BERT[15] are novel architectures in NLP which are descendants of Transformer. Attention
is not only useful in NLP, but also useful in generative models e.g., Self-Attention GAN[91].

MobileNets is a set of low-parameter networks, so that is is efficient for real-time applications.
The core idea of MobileNet and is to decompose expensive operations into a set of smaller
(and faster) operations. MobileNetV2[66] and MobileNetV3[28] are descendent of MobileNets
making great progress on improving accuracy and reduciing size; SqueezeNet[31] and a set of
ConvNets[38] are variant of MobileNets making great progress on reducing size.

Transformer could be further improved in some ways. For example, Transformer is inefficient
while training, which is further improved by Reformer[35].

An alternative way of improving efficient, which is not a variant or descendent of Transformer
is Single Headed Attention RNN[50], which is a variation of LSTMs. It achieves state-of-the-
art results on enwik8 without intensive hyper parameter optimization, so that it is efficient.
Additionally, this Attention mechanism is also readily extended to large contexts with minimal
computation.

5.5.1 Transformer

Transformer mechanism uses stacked self-attention and point-wise fully connected layers for both
encoder and decoder. Encoder maps an input (x1, ..., xn), a sequence of symbol representations,
to a sequence of continuous representations, z = (z1, ..., zn). Decoder uses z generate an output
sequence of symbols, (y1, ..., yn). The sequence of output are generated one element at a time,
and each symbol is generated based on the previous symbol (auto-regressive).

Encoder is composed of a stack of 6 identical layers. Each layer has two sub-layers, the first
is a multi-head self-attention mechanism and the second is a position-wise fully connected
feed-forward network. Transformer emploies a residual connection[26] around each of the
two sub-layers and followed by layer normalization[3]. Thus, the output of each sub-layer is
LayerNormpx ` Sublayerpxqq, where Sublayerpxq is the function implemented by the sub-
layer itself. All sub-layers and the embedding layers produce outputs of dimension dmodel “ 512
in order to facilitate residual connections.

Decoder is also composed of a stack of six identical layers. The only differences between Decoder
and Encoder are: (1)a third sub-layer is inserted into the two sub-layers. It performs multi-head
attention over the output of the encoder stack. Residual connections around each of the sub-
layers followed by layer normalization are also employed in this third sub-layer like the others
two sub-layers. (2) The self-attention sub-layer in the decoder stack is modified to prevent
positions from attending to subsequent positions. This masking ensures the predictions for
position i, where i ě 2, depending only on the known output at position i ´ 1.

Attention function is mapping a query and a set of key-value pairs to an output. The query,
keys, values, and output are all vectors. The output is a weighted sum of values, which is
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computed by a compatibility function of the query with the corresponding key.

Scaled Dot-Product Attention:

Input consists of

• queries with dimension dk,

• keys with dimension dk, and

• values with dimension dv.

Output of the matrix of attention function is

DotproductAttentionpQ,K, V q “ softmaxp
QKT

?
dk

qV

, where matrices Q, K, V are sets of queries, keys, and values packed together.

Multi-Head Attention:

The input is the same as input of Scaled Dot-Product Attention.

The matrix of outputs is

MultiHeadAttentionpQ,K, V q “ Concatphead1, ..., headhqWO

headi “ DotproductAttentionpQWQ
i ,KWK

i , V W V
i q

, where the projections are parameter matrices WQ
i P Rdmodelˆdq ,WK

i P Rdmodelˆdk ,W V
i P

Rdmodelˆdv

Self-attention is an attention mechanism using different positions of a single sequence to
compute a representation in that sequence.

5.5.2 Self-Attention GAN

GAN-based models are computationally inefficient for modeling long-range dependencies in
images. Because those models is built using convolutional layers, which processes information
in a local neighborhood. Self-Attention GAN (SAGAN) efficiently addressed this inefficiency
by introducing self-attention to the GAN framework to make the model non-local based and
adapt a widely separated spatial regions.

Model Architecture

• First, The image features from the previous hidden layer x P RCˆN are transformed into
two feature spaces f, g, where C is the number of channels and N is the number of feature
locations of features from the previous hidden layer.

• Second, calculate the attention, where fpxq “ Wfx, gpxq “ Wgx

• Third, calculate βj,i, which indicates the extent that the model attends to the ith, where
sij “ fpxiq

T gpxjq,

βj,i “
exppsijq

řN
i“1 exppsijq
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Figure 2: SAGAN Algorithm. The b denotes matrix multiplication.[91]

• The output of the attention layer is o “ po1, o2, ..., oj , ..., oN q P RCˆN , where,

oj “ v
`

N
ÿ

i“1

βj,ihpxiq
˘

, hpxiq “ Whxi, vpxiq “ Wvxi.

Wg P RCˆC ,Wf P RCˆC ,Wh P RCˆC ,Wv P RCˆC are the learned weight matrices, which
are implemented as 1x1 convolutions.

• The final output is given by yi “ γoi`xi, where γ is a learnable scalar, which is initialized
as 0. γ initialized as 0 allows the network to first rely on the cues in the local neighborhood,
then gradually learns to assign more weight to the non-local evidence. The reason of doing
this is to first learn easy task and then progressively increase the complexity of the task.

5.5.3 Single Headed Attention RNN:

This is an upgrade of the AWD-LSTM[51]. The model contains: a trainable embedding layer,
at least one layer of a stacked single head attention recurrent neural network (SHA-RNN), and
a softmax classifier. Both embedding and softmax classifier utilize tied weights. The model uses
a single head of attention, and a Boom layer which means a modified feedforward layer similar
to that in a Transformer.

The attention mechanism has been simplified in SHA-RNN, (since no-one proves that tens of
attention is necessary and beneficial) which saves lots of memory space and avoids a great deal
of computation. This helps extend memory window indefinitely with minimal overhead.

The Boom layer is related to the large feed forward layer in Transformers. To minimize compu-
tation and replace an entire matrix of parameters into traditional down-projection layers, the
Boom layer is rearranged in the following way:

• First, like what other Transformers did in the Boom layer, where a vector, v P RH , is
taken to do matrix multiplication with GeLU activation function to produce a vector,
v P RNˆH .

• Second, breaking u into N vectors, u1, ..., un P RH .

• Third, summing those together to produce w P RH .

28



(a) The SHA-RNN is composed of a pointer based
attention and a “Boom” feed-forward with a sprin-
kling of layer normalization. The persistent state is
the RNN’s hidden state h as well as the memory M
concatenated from previous memories.

(b) The attention mechanism within the SHA-RNN
is highly computationally efficient. The only matrix
multiplication acts on the query. The A block rep-
resents scaled dot product attention, a vector-vector
operation. The operators tqs, ks, vsu are vector-
vector multiplications and thus have minimal over-
head. We use a sigmoid to produce tqs, ksu, where
vs “ θpW fvq 9tanhpW cvq.

Figure 3: SHA-RNN Architecture
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5.6 Diversity Mechanism

DIVERSITY IS ALL YOU NEED [18] (DIAYN) proposes a new method for learning useful skill
using reinforcement learning without a reword function. On a variety of simulated robotic tasks,
this method results in the unsupervised emergence of diverse skills e.g., walking and jumping.
This method is able to solve the benchmark task despite never receiving the true task reward.
Also the learned skills could solve the task in a distinct manner. This work also shows that
unsupervised discovery of skills can serve as an effective pertraining mechanism for overcoming
challenges of exploration and data efficiency in reinforcement learning.

5.6.1 Learning Skills without a Reward Function

The procedure of DIAYN is that: (1) first, train multiple skills and distinguish them by states;
(2) second, encourage each skill to have a high entropy in order to keep discriminable. However,
two skills that are largely distinguishable in states does not necessary obviously diverse in
skills. So we should train skills as random as we can instead of select skills that are largely
distinguishable in state.

Figure 4: DIAYN Algorithm: We update the discriminator to better predict thee skill, and
update the skill to visit diverse states that make it more discriminable.

First, we sample a skill from uniform distribution. The skill is corresponding to a policy. Then
we sample actions based on the policy, so that we have a state of that action and skill. Then
we train the discriminator, which is only given access to the current state.

S is a random variable for a state and A is a random variable for an action. Z is a random
variable for a skill. Z „ ppzq is a latent variable on which we condition policy. Ip.; .q refers
to mutual information. IpS;Zq is the mutual information between S and Z. Hr.s refers to
Shannon entropy. To ensure the skill control which states the agent visits, we maximize mutual
information between skills and states, IpS;Zq. To ensure that it is state that distinguishes
skills, instead of action, we minimize the mutual information between skills and actions given
the state, IpA;Z|Sq. A mixture of policies is a combination of skills and ppzq, we maximize the
entropy HrA|Ss of this mixture policy.
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F pθq fi IpS;Zq ` HrA|Ss ´ IpA;Z|Sq

“ pHrZs ´ HrZ|Ssq ` HrA|Ss ´ pHrA|Ss ´ HrA|S,Zsq

“ HrZs ´ HrZ|Ss ` HrA|S,Zs

HrZs encourages prior distribution over ppzq to have high entropy. We fix ppzq to be uniform,
guaranteeing that is has maximum entropy. HrZ|Ss suggests that it should be easy to infer
the skill z from the current state. HrA|S,Zs suggests that each skill should act as randomly
as possible, which we achieve by using a maximum entropy policy to represent each skill. As
we cannot integrate over all states and skills to compute ppz|sq exactly, we approximate this
posterior with, qϕpz|sq, a learned discriminator. By Jensen’s Inequality, replacing ppz|sq with
qϕpz|sq gives us a variational lower bound ϱpθ, ϕq on our objective F pθq.

F pθq “ HrA|S,Zs ´ HrZ|Ss ´ HrZs

“ HrA|S,Zs ` Ez„ppzq,s„πpzqrlogppz|sqs ´ Ez„ppzqrlogppzqs

ě HrA|S,Zs ` Ez„ppzq,s„πpzqrlogppz|sq ´ logppzqs

fi ϱpθ, ϕq

6 Using Meta-Learning to Address the Task-Agnostic Problem in Natural
Language Understanding

6.1 Introduction

Human beings can generalize from a single example of a task to similar tasks. However, com-
puters need to effectively see thousands of examples to learn to generalize to similar tasks. To
learn computers need to be given labeled datasets, which include both correct and incorrect
examples, properly labeled. The limited amount of available labeled datasets makes it difficult
for machine learning to achieve human-level performance. Meta-Learning, which is known as
“learning to learn”, can address this difficulty. This means that meta-Learning enables learning
with a few training samples and enables adaptation across domains or in a single constantly
changing domain. Meta-Learning has been explored and used in robotics and computer vision,
but it has not been sufficiently explored in natural language processing. This research aims to
explore how to use meta-Learning in addressing task-agnostic problems in Natural Language
Understanding.

6.2 Symbolic Approach

6.2.1 Semantic Parsing Framework

The task is defined as given a reference table t and a question x, we predict an answer y. For
prediction, we first convert the reference table t to a knowledge graph of words w. Second, we
generate a set of candidate logical forms Zx by parsing x using w. For each z P Zx, we can
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get a corresponding answer denotation rzsw by executing z in w. We extract a feature vector
ϕpx,w, zq for each z P Zx and define a log-linear distribution over the candidates:

pθpz|x,wq9 exptpθJϕpx,w, zqu,

where θ is the parameter vector. We finally choose z with the highest pθ and execute z on w to
predict the answer denotation y “ rzsw.

For training, given the training examples D “ tpxi, ti, yiquNi“1, we seek θ that maximizes the
regularized log-likelihood of the correct yi marginalized over logical forms z.

Formally, we maximize the objective function:

Jpθq “
1

N

N
ÿ

i“1

log pθpyi|xi, wiq ´ λ||θ||1,

where wi is deterministically generated from ti, and

pθpy|x,wq “
ÿ

zPZx;y“rzsw

pθpz|x,wq.

6.2.2 Knowledge Representation

We deterministically convert the table t into a knowledge graph k, Figure 5. Table rows become
row nodes, strings in table cells become entity nodes, and table columns become directed edges
from the row nodes to the entity nodes of that column. The column headers are used as edge
labels for these row-entity relations.The knowledge graph representation is convenient for three
reasons.

First, we can encode different forms of entity normalization in the graph. The edges correspond
to different normalization methods from the entity nodes. For example, the node 1900 will have
an edge called Date to another node 1900{DD{MM of type date. Moreover, these normalization
nodes also aid learning by providing signals on the appropriate answer method. For instance,
we can define a feature that associates the phrase “how many” with a logical form that says
“traverse a row-entity edge, then a number edge” instead of just “traverse a row-entity edge.”

Second, the graph representation could handle various logical phenomena via graph augmenta-
tion. There are two special edges on each row node. The Next edge pointing to the next row
node, the questions can be answered by traversing the Next edge. And an Index edge pointing
to the row index number p0, 1, 2, ...q, which is used to answer questions, such as, for instance,
“What is the next?” or “Who came before?”.

Third, with a graph representation, we can query it directly using a logical formalism for
knowledge graphs.

6.2.3 Logical Forms

We use lambda dependency-based compositional semantics [42], or lambda DCS, to construct
our logical forms. Each lambda DCS logical form is either a unary or a binary. The basic
unary elements are singletons, which represent values, for instance, “China” and “30”. The
basic binaries are relations, which represent relationships, for instance, “City” maps rows to
city entities, “Next” maps rows to rows, and “ą“” maps numbers to numbers. Logical forms
can be combined into larger ones via various operations based on unary and binary rules.
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Figure 5: An example of the knowledge graph [59]. Circular nodes are row nodes. Number and
Date are different entity normalization nodes.

6.2.4 Parsing Algorithm

Given the knowledge graph w, we describe how to parse the utterance x into a set of candidate
logical forms Zx.

Because of the mismatch problem in the standard Chart parser, which anchoring each predicate
in the logical form to tokens in the utterance via lexical rules. We use the Floating parser, which
makes parsing more freely. Floating parser [59] allows logical form predicates to be generated
independently from the utterance.

The floating cells represented as pc, sq, where c is category and s is logical form size. It follows
three rules:

• pTokenSpan, i, jqrss Ñ pc, 1qrfpsqs, this allows us to keep track of the category c and its
size 1.

• ∅ Ñ pc, 1qrfpqs, this allows us to construct logical form representing relation, using rules
independent of the utterance. For instance, using rule ∅ Ñ pc, 1qrfpqs to represent a table
relation ‘Country’ in cell pRelation, 1q.

• pc1, s1qrz1s`pc2, s2qrz2s Ñ pc, s1`s2`1qrfpz1, z2qs, this allows us to perform composition,
where the induction is on the size s of the logical form.

The floating parser is very flexible: it can skip tokens and combine logical forms in any order.

6.3 Neural Network Approach

To learn multiple tasks at once to solve the task-agnostic problem, the model that we choose to
use is Meta-Learning. This is because of the three properties of the Meta-Learning, which made
Meta-Learning more robust than any other deep learning models while addressing task-agnostic
problems or unforeseen tasks.
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Recently meta-learning has obtained high attention and great success in many domains. Most
common uses of the technique are for hyper-parameter [47] and neural network optimization
[39, 10], finding good network architectures [93, 4, 56], few-shot image recognition [20, 65, 25],
and fast reinforcement learning [17, 83, 20].

There are three common types of meta-learning approaches: metric-based, model-based, and
optimization-based.

Metric-based meta-learning is designed to learn a metric function, the idea is similar to nearest
neighbor algorithms, for instance, k-nearest neighbors algorithm, k-means clustering, and kernel
density estimation. The goal is to learn a good kernel for a specific task [36, 75, 71, 70].
Model-based meta-learning is designed specifically for fast learning, which means updating its
parameters rapidly with a few training steps. One way of achieving this is to be controlled by
another meta-learner model [68, 54]. Another way is is make a specific internal architecture to
achieve its goal [85, 23]. It makes no assumptions on Pθpy|xq.

Optimization-based meta-learning is designed to achieve good performance by learning with
few examples. Because of the reality that there are lots of

According to those three approaches, their corresponding properties, and the property of our
task, we choose the optimization-based approach to address our task.

6.3.1 Meta-Learning

A usual meta-learning model is trained over a variety of learning tasks and optimized for the
best performance on a distribution of tasks, including unseen tasks. Each task is associated with
a dataset D, containing both feature vectors and target labels. The optimal model parameters
are: θ˚ “ arg minθ ED„ppDqrLθpDqs, where each data sample is a set of data. K-shot N-
class classification is a supervised instance of meta-Learning. This means that the support set
contains K samples in total for each of N classes. The dataset D is often split into two parts, a
learning and prediction set of S, and a training and testing set of B.

A dataset D “ tpxi, yiqu, where pxi, yiq is a pair of feature vectors and labels. Each label
yi P Llabel, where Llabel is a known label set.

Assume that classifier fθ with optimal parameter θ outputs a probability Pθpy|xq of a data
point, given the feature vector x belonging to the class y.

The optimal parameters θ should the probability of true labels across training batches B Ă D:

θ˚ “ arg max
θ

Epx,yqPDrPθpy|xqs

“ arg max
θ

EpBĂDr
ÿ

px,yqPB

Pθpy|xqs

The few-shot classification has two goals:

• reduce the prediction error on task-agnostic dataset, i.e., a set of data samples with
unknown labels.

• learn fast a subset of training and prediction sets.

The modified model with the optimization procedure in order to achieve the fast learning could
be represented as follows.

34



We select a subset from the set of target labels, L Ă Llabel. Then we have the learning and
prediction set SLD and training and testing set BLD, where y P L,@px, yq P SL, BL. The
support set is part of the model input. Then we consider each pair of sampled dataset pSL, BLq

as one data point. The trained model can generalize to other datasets. The representation of
meta-learning is

θ “ arg max
θ

ELĂL rESLĂD,BLĂDr
ÿ

px,yqPBL

Pθpx, y, SLqss.

The idea is similar to use a pre-trained language model on big text corpora with only a limited
set of task-specific data samples available. Meta-Learning takes this idea one step further,
rather than fine-tuning on a single down-steam task. It optimizes the model to be good at all
or at least many.

Another point of view of meta-learning could be a two stages update.

• A classifier fθ is the “learner” model, trained for operating a given task;

• A optimizer gϕ learns to update the learner model’s parameters θ via the support set S,
θ Ñ θ1 “ gϕpθ, Sq.

• In the final optimization step, maximize the parameter θ =

ELĂL rESLĂD,BLĂDr
ÿ

px,yqPBL

Pgϕpθ,SLqpy|xqss

by updating both θ and ϕ.

6.3.2 Optimization-based meta-Learning

Now we introduce some Optimization-based Meta-Learning (OBML) architectures based on
meta-learning, which is a good fit for our task.

LSTM-based Meta-Learner [DBLP:conf/iclr/RaviL17], is to learn the optimization al-
gorithm used to train another learner neural network classifier in the few-shot regime 1, which
means to efficiently update the learner’s parameters using a few support set, in order to achieve
the goal of adapting to the new task quickly.

Let’s denote the learning model for operating the task as MΘ with parameters Θ, the meta-
learner as Rϕ with parameters ϕ, and the loss function L. The update for the learner’s pa-
rameters ϕt at time step t, with a learning rate rt is: ϕt “ ϕt´1 ´ rt∇ϕ´1Lt. The train-
ing process mimics the testing process. For each training epoch, we first sample a dataset
D “ pDtrain, Dtestq P D̂meta´train, and then sample mini-batches out of Dtrain to update θ for
T rounds. The final state of the learner parameter θT is for training the meta-learner on the
test data Dtest.

Model-Agnostic Meta-Learning (MAML) [20] is a general optimization algorithm. Let’s
denote learning model is fθ with parameters θ. Given a task τi and its associated dataset

pD
piq
train, D

piq
testq, we can update the model parameters by one gradient descent step, θ1

i “ θ ´

1A K-shot N-class classification task means the support set contains K labelled examples for each of N classes.
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Algorithm 3 LSTM-based Meta-Learner

Input: Meta-training set D´, Learner M with parameters θ, Meta-Learner R with ϕ.
ϕ0 Ðrandom initialization d “ 1, n D, D Ð random dataset from D´ θ0 Ð c0 t “ 1, T

Xt,Yt Ð random batch from D Lt Ð LpMpXt; θt´1q,Ytq ct Ð Rpp∇θt´1Lt;Ltq, ϕd´1q

θt Ð ct X, Y Ð D D Ð L pMpX; θT q,Yq Update ϕd using ∇ϕd´1
L

Algorithm 4 Model-Agnostic Meta-Learning

Require: ppT q : distribution over tasks
Require: α, β : step size hyper-parameters

random initialize θ not done Sample batch of tasks Ti „ ppT q Ti Evaluate ∇θLT pfθq

with respect to K examples Compute adapted parameters with gradient descent: θ1
i “

θ ´ α∇θLT pfθq Update θ Ð θ ´ β∇θ
ř

Ti„ppT q LTipfθ1
i
q

r∇θL
p0q
τi pfθq, where L pq is the loss computed using the mini data batch with id (0), or more

gradient descent steps,

θ˚ “ min
θ

ÿ

τi„ppτq

Lp1qpfθ˚i
q

“ min
θ

ÿ

τi„ppτq

Lp1qpf
θ´r∇θL

p0q
τi

pfθq
q

In the case of Figure 6, the optimal θ˚ is more likely be θ˚
2 choosing from θ˚

1 , θ
˚
2 , and θ˚

3 . For
each task τi, we finally update the θ for it,

θ Ð θ ´ β∇θ

ÿ

τi„ppτq

Lp1qpfθ˚i
q,

where the loss function Lpiq means the loss function of a sample of data batch with idpiq.

Figure 6: Diagram of MAML, which optimizes for a representation θ that can quickly adapt to
new tasks [21]. θ˚

i is the learning parameter learned from mini data batch with id(i).

First-Order MAML (FOMAML) simplifies the MAML by omitting second derivatives in
MAML, to reduce the computational complexity of MAML. Which means simplifying Step8 in
Algorithm4, θmeta Ð θmeta ´ βgMAML, where

gMAML “ ∇θkL
pjqpθkq

k
ź

i“1

pI ´ r∇θi´1
p∇θLpj´1qpθi´1qqq,

to θmeta Ð θmeta ´ βgFOMAML, where

gFOMAML “ ∇θkL
pjqpθkq.
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Algorithm 5 Reptile

Initialize θ, the vector of initial parameters iteration = 1,2,... Sample tasks τ1, τ2, ..., τn
i “ 1, 2, ..., n Compute Wi = SGD(LTi , θ, k) Update θ Ð θ ´ β 1

n

řn
i“1pWi ´ θq

pjq represents the id of a sample of data batch.

Reptile [57] is a simple meta-learning optimization algorithm. Both MAML and Reptile opti-
mize via gradient descent and both are model-agnostic.

Figure 7: Diagram of the Reptile algorithm. The sequence of iterations moves alternately
towards two optimal solution manifolds W˚

τ1 and W˚
τ2 , and converges the learning parameter θ

to the point that minimize the average squared distance.

Assume a task τ „ ppτq has a manifold of optimal network configuration W˚
τ . The model fθ

achieves the best performance for task τ when θ lays on the surface of W˚
τ . To find a solution

that is good across tasks, we would like to find a parameter θ close to all the optimal manifolds
of all tasks

θ “ min
θ

Eτ„ppτqr
1

2
distpθ,W˚

τ q2s,

where
distpθ,W˚

τ q “ distpθ,W˚
τ pθqq,

where
W˚

τ pθq “ min
WPW˚

τ

distpθ,W q.

Thus, the stochastic gradient update step is

θ “ θ ´ r∇θr
1

2
distpθ,W˚

τ q2s

“ θ ´ rpθ ´ W˚
τipθqq

“ p1 ´ rqθ ` rW˚
τipθq.

We cannot compute exactly the closest point on the optimal task manifold W˚
τipθq, but Reptile

approximates it using SGD(LTi , θ, kq.

6.3.3 MAML vs FOMAML vs Reptile

To represent the connection and differences among MAML, FOMAML, Reptile, we compare

their update rule in the case of two gradient steps k “ 2. We assume that g
piq
j “ ∇θLpiqpθjq

and h
piq
j “ ∇2

θLpiqpθjq for simplification of the two gradient steps, and also assume that there

are only two different mini-batches of data samples with losses Lp0q and Lp1q. Also by Taylor
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expansion, we get the following three formulas of gradient update:

gMAML “ g
p1q

0 ´ rh
p1q

0 g
p0q

0 ´ rh
p0q

0 g
p1q

0 ` Opr2q

gFOMAML “ g
p1q

0 ´ rh
p1q

0 g
p0q

0 ` Opr2q

gReptile “ g
p0q

0 ` g
p1q

0 ´ rh
p1q

0 g
p0q

0 ` Opr2q

During training, we often average over multiple data batches. The expectation Eτ,0,1 is averaged
over data batches, idsp0q and p1q in our case, for task τ . Thus we get

• The average gradient of task loss,

Eτ,0,1rg0s “ Eτ,0,1rg
p0q

0 s “ Eτ,0,1rg
p1q

0 s.

We expect to improve the model parameter to achieve better task performance by following
this direction.

• The gradient that increases the inner product of gradients of two different mini batches
for the same task,

Eτ,0,1rh0g0s “
1

2
Eτ,0,1rh

p1q

0 ` g
p0q

0 s “
1

2
Eτ,0,1r∇θg

p0q

0 g
p1q

0 s.

We expect to improve the model parameter to achieve better generalization over different
data by following this direction.

Therefore, we get

Eτ,0,1rgMAMLs “ Eτ,0,1rg0s ´ 2rEτ,0,1rh0g0s ` Opr2q

Eτ,0,1rgFOMAMLs “ Eτ,0,1rg0s ´ rEτ,0,1rh0g0s ` Opr2q

Eτ,0,1rgReptiles “ 2Eτ,0,1rg0s ´ rEτ,0,1rh0g0s ` Opr2q

In conclusion, FOMAML is able to obtain a similar performance as the full version of MAML.
Both MAML and Reptile aim to optimize for the same goal, better task performance, Erg0s,
and better generalization, Erh0g0s.

6.3.4 Symbolic-Neural Approach

Semantic parsing each text into a formal knowledge tree, which represents the rule structure of
those sentences without redundant words.

Then we convert the tree into a sequence of numerical values and set them as input variables
corresponding to their output labels. The approach that we used is Tree-to-string Alignment
Template (TAT) [45]. The template z “ă T̃ , S̃, Ã ą is a triple representation, which describes
the alignment Ã between the source parse tree T̃ and a target string S̃. The source parse tree is
T̃ “ T pF J 1

1 is a sequence of leaf nodes, which contains both source words and phrasal categories.
The target string S̃ “ EI 1

1 is a word string, which contains both target words and placeholders.
An alignment Ã Ď tpj, iq : j “ 1, ..., J 1; i “ 1, ..., I 1u is a subset of the Cartesian Product of
source and target symbol positions. The TAT-based translation model can be decomposed into
four sub-models:
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• Parse model: P pT pfJ
1 q|fJ

1 q

• Detachment model: P pD|T pfJ
1 q, fJ

1 q ” P pS̃K
1 |T̃K

1 q, where the hidden variable D detaches
the source parse tree T pfJ

1 q into a sequence of K subtrees T̃K
i with preorder traversal.

Assume that each subtree T̃k produces a target string S̃k.

• Selection model: P pz|T̃ q

• Application model: P pS̃|z, T̃ q

Thus, we introduce the tree-to-string alignment templates z into probabilistic dependencies to
model P peI1|fJ

i q. The deduction of the model based on the four sub-models is the following:

P peI1|fJ
1 q “

ÿ

T pfJ
1 q

P peI1, T pfJ
1 q|fJ

1 q

“
ÿ

T pfJ
1 q

P pT pfJ
1 q|fJ

1 qP peI1|T pfJ
1 q, fJ

1 q

P peI1|T pfJ
1 q, fJ

1 q “
ÿ

D

P peI1, D|T pfJ
1 q, fJ

1 q

“
ÿ

D

P pD|T pfJ
1 q, fJ

1 qpeI1|D,T pfJ
1 q, fJ

1 q

“
ÿ

D

P pD|T pfJ
1 q, fJ

1 qP pS̃K
1 |T̃K

1 q

“
ÿ

D

P pD|T pfJ
1 q, fJ

1 q

K
ź

k“1

P pS̃K
1 |T̃K

1 q

P pS̃|T̃ q “
ÿ

z

P pS̃, z|T̃ q

“
ÿ

z

P pz|T̃ qP pS̃|z, T̃ q

The hidden variable T pfJ
1 q is omitted, because we only use the best parsing output. The hidden

variable D is omitted, because we assume that all detachment have the same probability. Thus
the model is simplified by parse, detachment, and sub-models.

P peI1, z
K
1 |fJ

1 q “
expr

řM
m“1 λmhmpeI1, f

J
1 , z

K
1 qs

ř

e1
1
I ,z1

1
K expr

řM
m“1 λmhmpe1

1
I , fJ

1 , z
1
1
Kqs

êI1 “ argmax
eI1,z

K
1

M
ÿ

m“1

λmhmpeI1, f
J
1 , z

K
1 q
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Feature functions analogous default feature set of Pharaoh[koen-2004-pharaoh] are:

h1peI1, f
J
1 , z

K
1 q “ log

K
ź

k“1

Npzq 9ϵpT pzq, T̃kq

NpT pzqq

h2peI1, f
J
1 , z

K
1 q “ log

K
ź

k“1

Npzq 9ϵpT pzq, T̃kq

NpSpzqq

h3peI1, f
J
1 , z

K
1 q “ log

K
ź

k“1

lexpT pzq|Spzqq 9ϵpT pzq, T̃kq

h4peI1, f
J
1 , z

K
1 q “ log

K
ź

k“1

lexpSpzq|T pzqq 9ϵpT pzq, T̃kq

h5peI1, f
J
1 , z

K
1 q “ K

h6peI1, f
J
1 , z

K
1 q “ log

I
ź

i“1

ppei|ei´2, ei´1q

h7peI1, f
J
1 , z

K
1 q “ I

6.4 Datasets

The dataset we used is WIKITABLEQUESTIONS [59]. It is a set of question answer pairs on
HTML tables. The dataset is constructed by Wikipedia with at least 8 rows and 5 columns. Let
one group of people to ask questions based on the table using 36 given generic prompts. Next, let
the other group of people answer those questions based on the table. After completing the two
tasks, only the answers agreed by at least two workers are kept in WIKITABLEQUESTIONS.

The dataset contains 22,033 examples on 2,108 tables. Those tables vary on topics and domains.
This is a good choice for the base of Meta-Learning problem, since the input set of Meta-Learning
should be a set of datasets. This is due to the mission of Meta-Learning is learning to learn in
order to address the new encountered tasks or unforeseen tasks.

7 Conclusion

There are four ways to improve NLU.

• As mentioned in Meta-Learning Section, GPT-3 is facing methodological issues on nat-
ural language inference and reading comprehension. Thus it is need to improve logical
reasoning ability on words that span long distances in text.

• The second direction in a narrower sense is to improve semantic parsing and grammar
correction. Once getting a dataset of a specific task or domain, one needs to correct the
grammar of each sample, so that the language model could be either pre-trained or fine-
tuned more effectively and correctly. However, it is time consuming and low quality while
correcting the grammar. To address this, we need to extend the domain adaptation of
grammar correction. A domain-general grammar and lexicon [6] used in some applications
had been designed, we need to further extend its domain. Alternatively we need to find
an efficient way, e.g., hierarchical reinforcement learning, to correct the grammar.
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• To make the performance of NLU closer to a human, only doing well in single and separate
domain or task is insufficient. Because it is sometimes unable to find dataset of a specific
domain, e.g., task-agnostic problem. Fortunately, GPT-3 has made a great progress to
address this. Thus the third direction in a broader sense is either improving the perfor-
mance of Meta-Learning on language model, or continuing to improve the performance of
pre-training model.

• The fourth direction is that, if we see task-agnostic problem from a different angle, an
alternative way of addressing this is to refer to information getting from speech recognition
and image processing. Because those information is domain-free or task-free.

8 Future Work

I will continue to study on Bayesian Deep Learning, Topic Modeling, and Meta-Learning to
seek for combination and improvement.
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