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ABSTRACT
Recent advances in machine learning (ML) and natural language
processing (NLP) have led to significant improvement in natural
language interfaces for structured databases (NL2SQL). Despite
the great strides, the overall accuracy of NL2SQL models is still far
from being perfect (∼75% on the Spider benchmark). In practice, this
requires users to discern incorrect SQL queries generated by amodel
andmanually fix themwhen usingNL2SQLmodels. Currently, there
is a lack of comprehensive understanding about the common errors
in auto-generated SQLs and the effective strategies to recognize
and fix such errors. To bridge the gap, we (1) performed an in-depth
analysis of errors made by three state-of-the-art NL2SQL models;
(2) distilled a taxonomy of NL2SQL model errors; and (3) conducted
a within-subjects user study with 26 participants to investigate the
effectiveness of three representative interactive mechanisms for
error discovery and repair in NL2SQL. Findings from this paper shed
light on the design of future error discovery and repair strategies
for natural language data query interfaces.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in inter-
action design.
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1 INTRODUCTION
Data querying is an indispensable step in data analysis, sense-
making, and decision-making processes. However, traditional data
query interfaces require users to specify their queries in a formal
language such as SQL, leading to significant learning barriers for
non-expert users who have little programming experience [46, 49].
This problem becomes increasingly important in the Big Data era,
given the rising needs for end users in many key domains includ-
ing business, healthcare, public policy, and scientific research. To
address this problem, natural language (NL) data query interfaces
allow users to express data queries in natural language. For exam-
ple, a semantic parser can parse the user’s natural language query
into a formal data query language such as SQL (NL2SQL). Such
natural language interfaces have shown the potential to lower the
bar for data querying and support flexible data exploration for end
users [5, 54].

However, achieving robust NL2SQL parsing in realistic scenarios
is difficult because of the ambiguity in natural language and the
complex structures (e.g., nested queries, joined queries) in the tar-
get queries. For example, in Spider [63], a large-scale complex and
cross-domain dataset for NL2SQL parsing, the accuracy of state-of-
the-art models remained low in the 20% to 30% range for quite some
time until 20191. Recently, advances in deep learning (DL) have
brought us closer than ever to achieving useful performance on this
important task. With the use of large pre-trained models, the per-
formance of state-of-the-art models [16, 23, 29] quickly increased
to about 75% in the past two years. However, the development in
model performance appears to have stagnated in the 75% range in
the last year, suggesting a bottleneck in model-only methods for
NL2SQL.

Furthermore, the flip side of an accuracy of 75% is an error rate
of 25%. This high error rate hinders the adoption of NL2SQL models
in the real world. When an error occurs, it is difficult for users to
discover the error and repair it due to the “black-box” nature of DL
models. Because data querying is often the foundation of a data
work pipeline, any error in the query can misinform the following
data analysis and decision-making process, causing catastrophic

1https://yale-lily.github.io/spider
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downstream impacts, especially in high-stake domains. Most prior
practices safeguarding users from AI’s failure are meant to inte-
grate user-friendly interactive debugging mechanisms that allow
users to easily detect and repair AI’s breakdown through human-AI
collaboration. For example, in the domain of task-oriented conver-
sational agents, SOVITE [35] allows users to fix agent breakdowns
in understanding user instructions by revealing the agent’s current
state of understanding of the user’s intent and supporting direct
manipulation for the user to repair the detected errors. However,
for NL2SQL, a major gap in the literature is the lack of empirical
studies on the types of errors that state-of-the-art NL2SQL mod-
els make, which blindfolds the design of effective error handling
mechanisms for NL2SQL.

In the HCI and NLP communities, there are some recent efforts
to support user understanding, error detection, and error repair of
SQL queries during the NL2SQL process using different approaches.
For example, following the task decomposition paradigm, DIY [40]
decomposes a generated SQL statement into a sequence of incre-
mental subqueries and provides step-by-step explanations to help
users identify errors. Meanwhile, QueryVis [31], QUEST [8], and
SQLVis [39] seek to improve user understanding of the gener-
ated SQL statements by visualizing the structures and relations
among entities and tables in a user-friendly way. The conversa-
tional method is also used to communicate the current state of the
model with users and update the results with user feedback through
dialogs [21, 58, 61]. Although these methods were shown to be use-
ful in different contexts in individual evaluations, it is not clear
how effective each method is with respect to different error types,
which hinders adaptive interaction design for NL2SQL debugging
tools. Most of these methods were also evaluated with only simple
NL2SQL errors, so it is unclear howwell they will perform on errors
made by state-of-the-art NL2SQL models on complex datasets such
as Spider [63].

To bridge those gaps, we first conducted a comprehensive anal-
ysis of SQL errors made by state-of-the-art NL2SQL models and
developed an axial taxonomy of those errors. In particular, we repro-
duced three representative models from the Yale Spider leaderboard
— SmBop [43], BRIDGE [37], GAZP [67]. For each model, we col-
lected all model-generated queries whose execution results are
different from the ground truth queries. Four authors conducted
multiple rounds of coding and refinement on these errors to derive
a taxonomy of NL2SQL errors. The error analysis result shows
that though the structure and performance of the models varied,
these models made errors on a common set of queries and showed
a similar distribution among different error types. The findings
can not only inform the design of future NL2SQL error-handling
mechanisms, but also help machine learning practitioners identify
opportunities to improve their models.

We also conducted a controlled user study (𝑁 = 26) to investigate
the effectiveness and efficiency of representative error discovery
and repair methods, including (i) a hybrid explanation- and example-
based approach that supports fixing the SQL query through entity
mapping between the natural language (NL) question and the gen-
erated query and discovering the error through a step-by-step NL
explanation approach (DIY [40]), (ii) an explanation-based SQL
visualization approach (SQLVis [39]), and (iii) a conversational di-
alog approach [61]. The study reveals that these error-handling

mechanisms have limited impacts on increasing the efficiency and
accuracy of error discovery and repair for errors made by state-
of-the-art NL2SQL models. Finally, we discussed the implications
for future error-handling mechanisms in natural language query
interfaces.

To conclude, this paper presents the following three contribu-
tions:

• We developed a taxonomy of error types for three represen-
tative state-of-the-art NL2SQL models through iterative and
axial coding procedures.

• We conducted a controlled user study that investigated the
effectiveness and efficiency of three representative NL2SQL
error discovery and repair methods.

• We discussed the implications for designing future error-
handling mechanisms in natural language query interfaces.

2 RELATEDWORK
2.1 NL2SQL techniques
Supporting natural language queries for relational databases is a
long-standing problem in both the DB and NLP communities. Given
a relational database 𝐷 and a natural language query 𝑞𝑛𝑙 to 𝐷 , an
NL2SQL model aims to find an equivalent SQL statement 𝑞𝑠𝑞𝑙 to an-
swer 𝑞𝑛𝑙 . The early methods of mapping 𝑞𝑛𝑙 to 𝑞𝑠𝑞𝑙 depend mainly
on the development of intermediate logical representation [19, 59]
or mapping rules [5, 32, 41, 44, 60]. In the former case, 𝑞𝑛𝑙 is first
parsed into logical queries independent of the underlying database
schema, which are then converted into queries that can be executed
on the target database [25]. On the contrary, rule-based methods
generally assumed that there is a one-to-one correspondence be-
tween the words in 𝑞𝑛𝑙 and a subset of database keywords/entities
[25]. Therefore, the NL2SQL mapping can be achieved by directly
applying the syntactic parsing and semantic entity mapping rules
to 𝑞𝑛𝑙 . Although both strategies have achieved significant improve-
ment over time, they have two intrinsic limitations. First, they
require significant effort to create hand-crafted mapping rules for
translation [25]. Second, the coverage of these methods is limited
to a definite set of semantically tractable natural language queries
[25, 41].

The recent development of deep learning (DL) based methods
aims to achieve flexible NL2SQL translation through a data-driven
approach [9, 20, 24, 37, 43, 67, 68]. From large-scale datasets, DL-
based models learn to interpret NL queries conditioned on a rela-
tional DB via SQL logic [37]. Most NL2SQL models use the encoder-
decoder architecture [37, 67, 68], where the encoder models the
input 𝑞𝑛𝑙 into a sequence of hidden representations along time
steps. The decoder then maps the hidden representations into the
corresponding SQL statement. Recently, Transformer-based archi-
tecture [37, 57] and pre-training techniques [22, 47, 62] have become
popular as the backbone of NL2SQL encoders. At the same time,
many decoders have been used to optimize SQL generation, such
as autoregressive bottom-up decoding [43] and the LSTM-based
pointer-generator [37]. However, those DL-based models are usu-
ally “black-boxes” due to the lack of explainability [25]. The lack
of transparency makes it difficult for users to figure out how to fix
the observed errors when using DL-based NL2SQL models.
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The evaluation of these DL-based models is based mainly on
objective benchmarks such as Spider [63] and WikiSQL [68]. For
example, Spider requires models to generalize well not only to
unseen NL queries but also to new database schemas, in order
to encourage NL interfaces to adapt to cross-domain databases.
The performance of a model is evaluated using multiple measures,
including component matching, exact matching, and execution
accuracy. However, these benchmarks only involve quantitative
analysis of NL2SQL models, giving little clue about what types of
errors a model tends to fall into.

An aim of our work is to develop a taxonomy of error types
of errors made by state-of-the-art NL2SQL models and report the
corresponding descriptive statistics to complement the quantitative
benchmark with the qualitative analysis of those NL2SQL models.

2.2 Detecting and repairing errors for NL2SQL
Natural language interfaces for NL2SQL face challenges in lan-
guage ambiguity, underspecification, and model misunderstanding
[13, 40]. Previouswork has exploredways to support error detection
and repair for NL2SQL systems through human-AI collaboration.
NL2SQL error detection methods can be mainly divided into cate-
gories of natural language-explanation-based, visualization-based,
and conversation-based approaches. NL2SQL error repair meth-
ods consist mainly of direct manipulation and conversational error
fixing approaches.

For error detection, a popular method is to explain the query
and its answer in natural language [13, 50, 52, 61]. For example,
DIY [40] shows step-by-step NL explanations and query results by
applying templates to subqueries, helping users understand SQL
output in an incremental way; NaLIR [33] explains the mapping
relations between entities in the input query and those in the data-
base schema; Ioannidis et al. [50] introduced a technique to describe
structured database content and SQL translation textually to sup-
port user sensemaking of the model output. Visualizations have
also been widely used to explain a SQL query and its execution
[7, 8, 31, 39]. For example, QueryVis [31] produces diagrams of SQL
queries to capture their logical structures; QUEST [8] visualizes the
connection between the matching entities from the input query and
their correspondences in the database schema; SQLVis [39] intro-
duced visual query representations to help SQL users understand
the complex structure of SQL queries and verify their correctness.

Most of previous work employed direct manipulation to repair
and disambiguate queries. NaLIR [33], DIY [40] and DataTone [17]
allow users to modify the entity mappings through drop-downs;
Eviza [48] and Orko [51] enable users to modify quantitative values
in queries through range sliders. In addition to direct manipulation,
several other prior interaction mechanisms enable users to give
feedback to NL2SQL models through dialogs in natural language.
For example, MISP [61] maintains the state of the current parsing
process and asks for human feedback to improve SQL translation
through human-AI conversations. Elgohary et al. [13, 14] investi-
gated how to enable users to correct NL2SQL parsing results with
natural language feedback in conversation.

With the many error-handling mechanisms that have been pro-
posed, there is a gap in evaluating how effective and efficient these
mechanisms are to address different types of NL2SQL errors and

what specific limitations they have. These types of information are
critical to inform the effective choice and design of NL2SQL error
handling mechanisms in different use scenarios and to inspire the
use of ensemble mechanisms to handle different usage contexts of
NL2SQL. Our work bridges this gap by investigating these ques-
tions through controlled user studies, whose findings could guide
the future design of NL2SQL error handling systems.

2.3 Error handling via human-AI collaboration
Handling errorsmade byAImodels in human-AI collaboration faces
many key challenges. First, many state-of-the-art AI models lack
transparency in their decision-making process, making it difficult
for users to understand exactly what leads to incorrect predictions
[45]. Although there are some attempts to explain the state of the AI
model using methods such as heatmap [42, 69], search traces [64],
and natural language explanations [11, 12], they only allow users
to peek at the AI model’s reasoning at certain stages instead of
exposing the holistic states of the model. Second, it is difficult for
users to develop a correct mental model for complex AI models
due to the representational mismatch in which “humans can create a
mental model in terms of features that are not identical to those used by
AI models” [6]. Lastly, error handling usually requires multiple turns
of interactions [27, 35]. However, maintaining coherent multi-turn
interactions between AI and humans is challenging [1]. It requires
AI to closely maintain and update the context history, evolve its
contextual understanding, and behave appropriately based on user’s
timely responses [2, 3, 70].

Our work contributes to the knowledge of how users handle
errors in their collaborations with NL2SQL models by studying
how users utilize existing error-handling mechanisms to inspect
and fix errors made by NL2SQL models and how they perceive the
usefulness of these mechanisms. Our findings of user challenges
also echo the identified challenges in human-AI collaborations in
other domains (e.g., programming [55, 56, 65], data annotation [18],
QA generation [66], interactive task learning [34, 36]), showing
that users need help comprehending the state of AI models and
developing a proper mental model in AI-based interactive data-
centric tools to understand and assess their recommendations.

3 AN ANALYSIS AND TAXONOMY OF NL2SQL
ERRORS

In this section, we describe the development of the taxonomy of
NL2SQL errors of three representative state-of-the-art NL2SQL
models and the corresponding error analysis. The structure of this
section is as follows. Section 3.1 summarizes the methodology used
for building the dataset; Section 3.2 explains the axial and iterative
coding procedure we used to derive the error taxonomy; Section 3.3
describes the developed taxonomy of NL2SQL errors; Section 3.4
presents an analysis of erroneous queries in the dataset based on
the taxonomy.

3.1 Dataset collection
We adopted the Spider [63] dataset to train and evaluate the models
to collect a set of erroneous SQL queries for the taxonomy. Spider
is the most popular benchmark to evaluate NL2SQL models with
complex and cross-domain semantic parsing problems. The original
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Easy Medium Hard Extra Total

Original Train 1983 2999 1921 1755 8658
Dev 248 446 174 166 1034

Re-split Train 1604 2363 1516 0 5483
Test 627 1082 579 0 2288

Table 1: Descriptive statistics of the original Spider dataset
and our sampled dataset

Models Err. queries Retrained Acc. Original Acc.
SmBop 431 81.2% 71.1%
BRIDGE 853 62.7% 68.3%
GAZP 1062 53.6% 53.5%

Table 2: Descriptive statistics and the accuracy of each model
we reproduced

Spider dataset consists of around 10,000 queries in natural language
on multiple databases across different domains (e.g., “soccer”, “col-
lege”). Depending on the complexity of their structures and the
SQL keywords involved, the queries are divided into four difficulty
levels: “Easy”, “Medium”, “Hard”, and “Extra Hard”. In this work, we
chose to focus only on the first three difficulty levels, since state-of-
the-art models have significantly lower accuracy on the “extra hard”
queries. For example, the best model we reproduced, SmBop [43],
only achieved ∼50% in accuracy), indicating that NL2SQL for “extra
hard” queries remains less feasible at this point.

Since the held-out test set in Spider is not publicly available,
we created our own test set by re-splitting the public training and
development sets from Spider. The ratios of the three difficulty
levels in the new training and testing sets were similar to those in
the original training and developing sets, respectively. In addition,
we ensured that there is no overlap in the databases used between
the training and testing sets. Table 1 shows the distribution of our
training and test data compared to the original public Spider dataset.
We then re-trained three NL2SQL models from the official Spider
leaderboard. We chose models that officially released the code, used
different core structures, and showed close to SOTA performance
at the time we prepared the dataset. These models are SmBoP [43],
BRIDGE [37] and GAZP [67].

The erroneous queries are those that have different execution
results from the correct ones. The queries generated by thesemodels
on the test set were manually analyzed to develop the taxonomy of
SQL generation errors. Table 2 shows the total number of erroneous
queries generated by each model. The accuracy of each model on
our test set is similar to the reported performance of these models
on the private held-out test set, indicating that our reproduction
and retraining of these models are consistent with the originals2.

3.2 The coding procedure
After curating the dataset of NL2SQL errors, we followed the estab-
lished open, axial and iterative coding process [4, 28] to develop a
taxonomy of NL2SQL errors. The detail of the process is as follows.

2The data, the replicated models, and the evaluation scripts we used are published in
https://github.com/realningzheng/IUI23-NLQ

3.2.1 Step 1: Open coding. To begin with, we randomly sampled 40
erroneous SQL queries to develop the preliminary taxonomy. Four
authors with in-depth SQL knowledge performed open coding [10,
28] on this subset of erroneous SQL queries. They were instructed
to code to answer the following questions: (1)What are the errors
in the generated SQL query in comparison to the ground truth? (2)
What SQL component does each error reside at? (3) Have all the errors
in the incorrect SQL query been covered?. Once we finished the first
round of coding, we put all the coded query pairs (the generated
query and the ground truth) line by line in a shared spreadsheet.
The annotators sat together to discuss the codes and reached a
consensus in the preliminary version of the codebook.

3.2.2 Step 2: Iterative refinement of the codebook. After creating
the preliminary codebook, four annotators conducted iterative re-
finements of the established codes. Each iteration consisted of the
following three steps. First, the annotators coded a new sample
batch of 40 unlabeled erroneous queries using the codebook from
the last iteration. If there is a new error not covered by the current
codebook, annotators would write a short description of it. Second,
we computed the inter-rater reliability between coders [38] (Fleiss’
Kappa and Krippendorff’s Alpha) at the end of each iteration. Lastly,
annotators exchanged opinions about adding, merging, removing,
or reorganizing codes and updated the codebook accordingly. An-
notators completed three refinement iterations until the codebook
became stable and the inter-rater reliability scores were substantial.
At the end of the final refinement iteration, the Fleiss’ Kappa was
0.69 and the Krippendorff’s Alpha was 0.67.

3.2.3 Step 3: Coding the remaining dataset. We then proceeded to
code the remaining dataset using the codebook from the final refine-
ment iteration. Because the inter-rater reliability scores stabilized
among annotators, two annotators participated in this step. The
Fleiss’ Kappa and Krippendorff’s Alpha of the full dataset annota-
tion between those two annotators were 0.76 and 0.78 respectively,
indicating substantial agreement [4, 15, 26].

3.2.4 The annotation interface. The interface used for the anno-
tation of the NL2SQL errors is shown in Figure 1. It consists of
three components: (1) a natural language query, the corresponding
ground truth, and the model-generated SQL query are displayed
in A; (2) In the error annotation section, the annotator first decided
which part(s) of the generated SQL is wrong in B, after that, the
annotator was supposed to choose error types from the checkbox
below. If the error type was not included, the system provided an
input box to provide open feedback. We updated the error types
after each batch of coding. (3) The tables involved in the pairs and
the query result table were displayed on the right side of the canvas
to help annotators identify the error types.

3.3 The Taxonomy of NL2SQL Errors
Table 3 shows the finalized taxonomy of NL2SQL errors. Specif-
ically, we categorized the error types along two dimensions: (1)
the syntactic dimension shows which parts of the SQL query an
error occurs in, categorized by SQL keywords such as WHERE and
JOIN; (2) the semantic dimension indicates which aspects of the
NL description that the model misunderstands, such as misunder-
standing a value or the name of a table. For each type of error, the

636

https://github.com/realningzheng/IUI23-NLQ


IUI ’23, March 27-31, 2023, Sydney, Australia

Figure 1: The user interface that we used for NL2SQL error annotation

uppercase letter refers to the syntactic category, and the lower-
case letter refers to the semantic category. Note that there may
be multiple manifestations of a semantic error in a syntactic error
category. For example, the table error has two different forms in
the “JOIN” clause, including “Missing a table to JOIN” (Ba1)
and “JOIN the wrong table” (Ba2). An erroneous query may
also have multiple error types associated with it.

3.4 NL2SQL error analysis
Based on the SQL generation error taxonomy, we conducted an
analysis on the set of erroneous queries to investigate the following
three questions.

• Q1: How are the erroneous queries distributed among differ-
ent models? Do models tend to stumble on the same queries
or make mistakes on distinct queries? For those overlapping
erroneous queries, do models tend to make similar types of
error on them or not?

• Q2: How do error types spread along the syntactic and se-
mantic dimensions? How different are the distributions of
error types among the three models?

• Q3: How far are the erroneous queries from their correspond-
ing ground truths?

3.4.1 The distribution of erroneous queries among models. Figure 2
shows the overlap of erroneous queries among the three models in
a Venn diagram, where each circle represents the queries on which
the model made errors. The size of each circle is proportional to
the number of erroneous queries of its corresponding model in the

sampled dataset (Table 2). Table 4 shows the number of queries in
each intersection and union area. In addition, 81.3% (350 out of 431)
of SmBop’s incorrect queries and 83.5% (712 out of 853) of BRIDGE’s
incorrect queries also confounded other models. The results imply
that different models tend to make errors on the same subset
of queries in NL2SQL.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝐸𝑠𝑚𝑏𝑜𝑝 ∩ 𝐸𝑏𝑟𝑖𝑑𝑔𝑒 ∩ 𝐸𝑔𝑎𝑧𝑝 |
|𝐸𝑠𝑚𝑏𝑜𝑝 ∪ 𝐸𝑏𝑟𝑖𝑑𝑔𝑒 ∪ 𝐸𝑔𝑎𝑧𝑝 |

(1)

To understand whether models make similar types of errors in
those overlapped queries, for each query in which all models made
errors, we calculated the Jaccard distance [30] of the syntactic and
semantic error types that different models made on this query. Jac-
card distance measures how similar multiple sets are. The definition
of Jaccard distance is shown in Equation 1, where 𝐸𝑚 means the
set of error types that the model𝑚 made on the target query. For
syntactic error types, 21.7% of overlapped queries have a Jaccard
distance of 0 among the three models, which implies that the mod-
els did not all make the same syntactic error type in these queries.
Regarding the semantic error types, 35.5% of these queries have
a Jaccard distance of 0. On the other hand, only 8.7% of the over-
lapped queries have the same syntactic error type from the three
models, and even fewer of them (4.3%) have the same semantic
error type from all three models. These results show that although
the models tend to make errors in the same set of queries, the
types of errors in each query tend to be different. We provide
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Error categories Error types SmBop BRIDGE GAZP

Syntactic errors

A: WHERE error

Aa1: Use a wrong table in WHERE 21 68 73
Ab1: Use a wrong column in WHERE 19 36 23
Ac1: Redundant WHERE clause 14 16 27
Ac2: Missing WHERE clause 15 21 61
Ad1: Other wrong value in WHERE clause 51 52 91
Ad2: Value case error in WHERE clause 62 69 82
Ad3: Value plurality error in WHERE clause 8 6 16
Ad4: Value synonym error in WHERE clause 35 40 45
Ae1: Wrong comparator (<, >, =, !=, etc) 8 13 14
Ae2: Wrong boolean operator (AND, OR etc.) 4 15 9

B: JOIN error

Ba1: Miss a table to JOIN 35 106 101
Ba2: JOIN the wrong table 24 89 78
Bb1: Use a wrong column in JOIN 13 79 69
Bc1: Redudant JOIN clause 17 82 113

C: ORDER BY error

Cb1: Use a wrong column to sort 3 26 26
Cc1: Miss a ORDER BY clause 12 22 20
Cc2: Redundant sorting 3 1 3
Ce1: Wrong sorting direction 6 27 23

D: SELECT error

Da1: Use a wrong table in SELECT 59 117 106
Db1: Return a wrong column in SELECT 21 56 78
Db2: Return a redundant column in SELECT 10 19 36
Db3: Miss returning column(s) in SELECT 20 34 59
Df1: Use wrong aggretation function 7 43 11
Df2: Miss aggregation function 5 19 14

E: GROUP BY error
Eb1: Use a wrong column in GROUP BY 6 10 18
Ec1: Miss a GROUP BY clause in the SQL query 10 33 47
Ec2: Redudant GROUP BY clause 6 7 16

F: HAVING error
Fc1: Miss HAVING clause 1 5 12
Fc2: Redundant HAVING clause 0 2 6
Fe1: Wrong condition in HAVING 1 2 3

G: LIKE error Gc1: Miss LIKE clause 1 3 9
Ge1: Wrong LIKE condition 1 8 22

H: LIMIT error Hc1: Redudant LIMIT clause 1 2 6
Hc2: Miss LIMIT clause 0 1 3

I: INTERSECT error Ie1: Wrong INTERSECT condition 8 8 9

J: DISTINCT error Jc1 Miss a DISTINCT keyword 7 18 96
Jc2 Redundant DISTINCT keyword 4 15 0

K: EXCEPT error Kc1 Wrong EXCEPT clause 14 27 24
L: NOT error Lc1 Miss NOT keyword 7 9 7
M: UNION Me1 Wrong UNION condition 9 9 8

Semantic errors

a: Table error 97 279 274
b: Column error 81 237 251
c: Miss/redundant Clause/keyword error 107 250 432
d: Value error 153 162 230
e: Condition error 37 82 88
f: Aggregation function error 12 62 25

Table 3: The taxonomy of NL2SQL errors with the count of errors of each type for the three models

three examples in Table 5 to illustrate the disparity of error types
in the same queries.

3.4.2 Error frequency. In this section, we investigate the distri-
bution of error types among models. Specifically, we report the
following three measures for each model:

(1) Syntactic error rate (𝑆𝑌𝑁𝐸𝑅𝑚𝑠 ): Given the model𝑚 and a
syntactic error type 𝑠 , 𝑆𝑌𝑁𝐸𝑅𝑚𝑠 is the number of queries in
which the model𝑚 made the syntactic error 𝑠 divided by the
number of ground truth queries in the entire development
set that has the corresponding syntax. (Table 6). It tells us
how likely a syntactical part of a query will produce errors.
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Count Intersect Count Union
SmBop-BRIDGE 307 977
SmBop-GAZP 319 1174
BRIDGE-GAZP 681 1234

SmBop-BRIDGE-GAZP 276 1315

Table 4: The numbers of erroneous queries corresponding to Figure 2

1 2 3

Natural language
query Show all product sizes.

What are the names of
the states that have
2 to 4 employees
living there?

What are the names
of all video games

that are collectible cards?

Ground truth
query

SELECT DISTINCT
product_size FROM Products

SELECT T1.state_province_county FROM
Addresses AS T1 JOIN Staff AS T2 ON
T1.address_id = T2.staff_address_id
GROUP BY T1.state_province_county
HAVING count(*) BETWEEN 2 AND 4;

SELECT gname FROM
Video_games WHERE

gtype = "Collectible card game"

Model Generated query Error types Generated query Error types Generated query Error types

SmBop
SELECT DISTINCT

products.product_color
FROM products

Db1

SELECT
addresses.state_province_county

FROM addresses JOIN staff
ON addresses.address_id =

staff.staff_address_id GROUP BY
addresses.state_province_county

HAVING COUNT( * ) >= 2

Fe1

SELECT video_games.gname
FROM video_games WHERE

video_games.gtype =
’collectible cards’

Ad1, Ad4

BRIDGE
SELECT

Products.product_size
FROM Products

Jc1

SELECT
Addresses.state_province_county

FROM Addresses
GROUP BY

Addresses.state_province_county
HAVING COUNT(*) >= 2

Fe1, Ba1 SELECT Video_Games.GName
FROM Video_Games Ac4

GAZP select product_size
from Products Jc1 select count ( * ) group by

having ( * ) between 4 and 2
Db1, Df1,
Eb1, Fe1

select GName from
Video_Games where
GType = "videoible"

Ad1

Table 5: Sampled erroneous NL-SQL pairs and their error types

Figure 2: The overlap of erroneous queries generated by three
NL2SQL models

(2) Syntactic error percentage (distribution) (𝑆𝑌𝑁𝐸𝑃𝑚𝑠 ):
Given the model𝑚 and a syntactic error type 𝑠 , 𝑆𝑌𝑁𝐸𝑃𝑚𝑠

is the number of queries in which the model 𝑚 made the
syntactic error 𝑠 divided by the total number of erroneous

queries made by the model 𝑚. (Table 6). It measures the
percentage of queries that contain a specific type of syntactic
error among all erroneous queries.

(3) Semantic error percentage (distribution) (𝑆𝐸𝑀𝐸𝑃𝑚𝑠 ):
Given the model𝑚 and the semantic error rate 𝑠 , 𝑆𝐸𝑀𝐸𝑃𝑚𝑠

is the number of queries in which the model 𝑚 made the
semantic error 𝑠 divided by the total number of erroneous
queries made by the model 𝑚. (Table 7). It measures the
percentage of queries that contain a specific type of semantic
error among all erroneous queries.

As shown in Table 6, the distributions of syntactic error type are
similar among all three models. Note that a model can produce a
query with multiple types of errors. Notably, the error percentage
of WHERE, JOIN and SELECT are significantly higher than that of
other syntactic error types for all the models. However, comparing
it with the syntactic error rate, we see that a higher frequency of
errors (in all queries) does not equate to a higher error rate when
a specific type of keyword is encountered. For example, although
UNION errors only account for fewer than 3% of erroneous queries
among all models, it has an error rate of more than 50% (i.e., when
the correct query shoud contain a UNION clause, the model has a
high probability of making errors there). The top-5 syntactic parts
that have the highest error rates are shown in Table 8.
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Compared to syntactic errors, the distribution of semantic er-
rors is more varied between models (Figure 7). We found that
d: Value error, a: Table error and c: Miss/redundant
clause/keyword error are the most frequent error for SmBop
(35.5%), BRIDGE (32.71%) and GAZP (40.68%) respectively. It indi-
cates that the semantic challenges of the investigated NL2SQL
models are more varied than the syntactic challenges they
faced.

3.4.3 Distance between erroneous and ground truth queries. Lastly,
we used Levenshtein distance to measure the distance between
erroneous and ground truth queries. The Levenshtein distance
between two queries is defined as the minimum number of word-
level (split by space) edits (insertions, deletions, or substitutions)
required to transform the model-generated query into the ground
truth query.

Figure 3 shows the distribution of the Levenshtein distances of
errors made by each model. It is worth noting that all three distri-
butions have a long tail. Specifically, by looking at the Levenshtein
distance in three different groups: 0–5, 6—10, and more than 10; we
found that a large portion of erroneous SQL queries for all three
models can be fixed in a small number of edits. In particular, 19.6%
(208/1062) queries in GAZP only need changes in one token; the
percentage of erroneous queries requiring only changes in one
token for BRIDGE and SmBop is 3.9% (34/853) and 10.7% (46/431),
respectively.

4 THE USER STUDY OF INTERACTIVE ERROR
DISCOVERY & REPAIR MECHANISMS

In the past few years, we have seen a growing interest in interactive
mechanisms for users to detect and repair NL2SQL errors [8, 21,
31, 39, 40, 58, 61]. To understand the performance and usage of
these mechanisms by users, we conducted a controlled user study
to examine the effectiveness of different error discovery and re-
pair mechanisms for NL2SQL3. Specifically, we investigated the
following research questions.
RQ1. How effective and efficient are the different error-handling

mechanisms and interaction strategies in NL2SQL?
RQ2. What are the user preferences and perceptions of different

mechanisms and strategies?
RQ3. What are the gaps between the capabilities of existing ap-

proaches and user needs?

4.1 Experiment conditions
In this study, we used four conditions shown in Table 9. In the
baseline condition, no interactive support was provided for error
discovery and repair. Users had to examine the correctness of a
generated SQL query by directly checking the query result and
manually editing a generated SQL query to fix an error.

In addition to the baseline, we selected three experimental con-
ditions based on three representative approaches for error discov-
ery and repair. The first experimental condition exemplifies an
explanation- and example-based approach (DIY [40]) that dis-
plays intermediate results by decomposing a long SQL query into
shorter queries and generating natural language explanations for

3The protocol of the study has been reviewed and approved by the IRB at our institution.

each step. Meanwhile, it allows users to fix the mapping between
words in the NL description and their corresponding entities in
the generated SQL query from a drop-down menu. The second
experimental condition uses an explanation-based visualiza-
tion approach (SQLVis [39]). The technique uses a graph-based
visualization for the generated SQL query to illustrate the explicit
and implicit relationship among different SQL components such
as the selected columns, tables, primary and foreign keys. The
third experimental condition exemplifies a conversational dia-
log approach (MISP [61]). It allows users to correct an erroneous
SQL query through multiple rounds of conversation in natural lan-
guage (Table 9). We replicated the core functionalities of the DIY
mechanism used in experimental condition #1 as described in the
paper [40] because the official source code was not publicly released.
For experimental condition #2, we used the official implementation4
provided by the authors. For the dialog system under experimental
condition #3, we implemented an interactive widget based on the
open-sourced command-line tool and an interactive graphical user
interface based on the React-Chatbot-Kit5 for the study.

4.2 Participants
We recruited 26 participants from the campus community of a
private university in the midwest of the United States through
mailing lists and social media. Participants included 15 men and
11 women aged 20 to 30 years. Nine participants were novice SQL
users who had either no experience in using SQL or had seen SQL
queries before but were not familiar with the syntax. 10 participants
were intermediate SQL users who had either taken an introductory
database course or understood the SQL syntax. The remaining 7
were experienced users who were familiar with SQL queries or
had significant experience working with SQL. Each participant was
compensated with $15 USD for their time.

4.3 Study procedure
In our study, each participant experienced the four conditions
described in Section 4.1. As the goal of this study is to investi-
gate the error discovery and repair behavior of users, the example
SQL queries for each participant were randomly selected from the
dataset of incorrect queries generated by the three NL2SQL models
used in the error analysis study. Each query that a participant en-
countered was also randomly assigned to one of the experimental
conditions or the baseline condition.

To facilitate the user experiment, we implemented a web applica-
tion that can automatically select SQL tasks and assign conditions
to study participants. After finishing one SQL query, users can click
the “Next” button on the application, and it will randomly select the
next query and assign a condition to it. Both the query assignment
and the condition assignment were randomized. For each query,
the web application renders the task description, the database and
its tables, and the assigned error-handling mechanisms.

Each experiment session began with the informed consent pro-
cess. Then, each participant watched a tutorial video about how
to interact with the system to solve an SQL task and fix NL2SQL
errors under different conditions. Then, each participant was given

4https://github.com/Giraphne/sqlvis
5https://www.npmjs.com/package/react-chatbot-kit
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Error Percentage Error Rate
Error type SmBop BRIDGE GAZP SmBop BRIDGE GAZP

A: WHERE error 47.80% 35.05% 30.89% 18.86% 27.38% 30.04%
B: JOIN error 17.87% 28.14% 31.83% 10.13% 31.58% 44.47%

C: ORDER BY error 4.64% 7.39% 5.74% 4.58% 14.42% 13.96%
D: SELECT error 23.20% 25.79% 25.80% 4.37% 9.62% 11.98%

E: GROUP BY error 5.10% 5.86% 7.63% 4.50% 10.22% 16.56%
F: HAVING error 0.46% 1.06% 1.98% 1.44% 6.47% 15.11%
G: LIKE error 0.46% 1.29% 2.92% 2.86% 15.71% 44.29%
H: LIMIT error 0.23% 0.35% 0.85% 0.41% 1.24% 3.73%

I: INTERSECT error 1.86% 0.94% 0.85% 18.60% 18.60% 20.93%
J: DISTINCT error 2.55% 3.87% 9.04% 4.78% 14.35% 41.74%
K: EXCEPT error 3.25% 3.17% 2.26% 20.29% 39.13% 34.78%
L: NOT error 1.62% 1.06% 0.66% 13.46% 17.31% 13.46%

M: UNION error 2.09% 1.06% 0.75% 56.25% 56.25% 50.00%

Table 6: The error percentage and error rate of each syntactic error type

Error type SmBop BRIDGE GAZP
a: Table error 22.51% 32.71% 25.80%

b: Column error 18.79% 27.78% 23.63%
c: Miss/redundant Clause/keyword error 24.83% 29.31% 40.68%

d: Value error 35.50% 18.99% 21.66%
e: Condition error 8.58% 9.61% 8.29%

f: Aggregation function error 2.78% 7.27% 2.35%

Table 7: The error percentage of each semantic error type

Model Top 1 Top 2 Top 3 Top 4 Top 5
SmBop UNION 56.25% EXCEPT 20.29% WHERE 18.86% INTERSECT 18.60% NOT 13.46%
BRIDGE UNION 56.25% EXCEPT 39.13% JOIN 31.58% WHERE 27.38% INTERSECT 18.6%
GAZP UNION 50.00% JOIN 44.47% LIKE 44.29% DISTINCT 41.74% EXCEPT 34.78%

Table 8: The top 5 error-prone syntactic parts of a SQL query

Condition Error Discovery and Repair Mechanisms
Baseline Direct SQL query editing

Exp. Cond. #1 Step-by-step SQL query explanation & NL-SQL entity mapping (DIY [40])
Exp. Cond. #2 Graph-based SQL query visualization (SQLViz [39])
Exp. Cond. #3 Conversational dialog system (MISP [61])

Table 9: The list of conditions used in the user study

a total of 45 minutes to solve as many SQL tasks as possible. On
average, each participant completed 22.0 SQL tasks in 45 minutes
(5.5 in each condition). After each experiment session, the partic-
ipant completed a post-study questionnaire. This questionnaire
asked participants to rate their overall experience, the usefulness
of interactive tool support under different conditions, and their
preferences in Likert scale questions. We ended each experiment
session with a 10-minute semi-structured interview. In the inter-
view, we asked follow-up questions about their responses to the
post-study questionnaire, if they encountered any difficulties with
interaction mechanisms under the conditions, and which parts they

found useful. We also asked participants about the general work-
flow as they approached the task and the features they wished they
had when handling NL2SQL errors. All user study sessions were
video recorded with the consent of the participants.

Following established open coding methods [10, 28], an author
conducted a thematic analysis of the interview transcripts to iden-
tify common themes about user experiences and challenges they
encountered while using the different error handling mechanisms,
as well as their suggestions for new features. Specifically, the coder
went through and coded the transcripts of the interview sessions
using an inductive approach. For user quotes that did not include
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Figure 3: The distribution of Levenshtein distances between erroneous queries and ground truth queries among three models

straightforward key terms, the coder assigned researcher-denoted
concepts as the code.

4.4 Data collection
For each SQL task, we collected three types of data from the partic-
ipant: (1) the updated SQL query after their repair; (2) the starting
and ending time; (3) the user’s interaction log with the error han-
dling mechanism (e.g., clicking to view the sampled table, opening
the drop-down menu, interacting with the chatbot).

We cleaned up the data from the participants through the fol-
lowing steps. First, we filtered out the queries that are skipped by
the participants (i.e., the user clicking on “Next” without making
any changes to the query), which consist of less than 10% of the
total data. Second, if the participant did not utilize the interaction
mechanism associated with the experimental condition at all (e.g.,
the user inspected the query without using any assistance and mod-
ified the query manually), the task was deemed to be solved using
the baseline method.

4.5 Results
In this section, we report the key findings on the efficiency, effec-
tiveness, and usability of different error handling mechanisms and
their user experiences. For each condition in a statistical test, the
data is sampled evenly and randomly.

F1: The error handling mechanisms do not significantly
improve the accuracy of fixing erroneous SQL queries. To start
with, we conducted a one-way ANOVA test (𝛼=0.05) among tasks
that used different error handling mechanisms. The p-value for the
accuracy was 0.82, indicating that there were no significant differ-
ences between the different error handling methods. The average
accuracy and standard deviation among the participants are shown
in Table 10.

We then analyzed the effect of different mechanisms on the accu-
racy of fixing specific error types, including five common syntactic
error types (A: WHERE error; B: JOIN error; C: ORDER BY
error; D: SELECT error; E: GROUP BY error, as well as six
semantic errors shown in Table 6. Using the same statistical test,
we found that the p-values for all types of error were higher than
the 0.05 threshold, indicating that there were no significant dif-
ferences in accuracy when the user used different error-handling
mechanisms (Table 11).

Furthermore, we found that different error-handlingmechanisms
did not significantly influence the accuracy of SQL query error han-
dling at various difficulty levels (Table 12). These findings suggest
that existing interaction mechanisms are not very effective for han-
dling NL2SQL errors that state-of-the-art deep learning NL2SQL
models make on complex datasets like Spider. We further discuss
the reasons behind these results and their implications in the rest
of Section 4.5 and Section 5.
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Conditions Avg. Acc. (𝜇 = 0.56) SD (𝜇 = 0.50) Avg. ToC (𝜇 = 116.7) SD (𝜇 = 89.6)

B1 0.55 0.48 109.7 95.8

C1 0.56 0.51 110.9 101.0

C2 0.60 0.50 115.9 96.5

C3 0.53 0.51 128.5 61.7

Table 10: The average accuracy and ToC (in seconds) for different conditions

Syntactic types Semantic types
A B C D E a b c d e f

B1 0.42 0.40 0.38 0.67 0.29 0.40 0.58 0.52 0.45 0.32 0.25
C1 0.40 0.44 0.27 0.56 0.24 0.42 0.58 0.53 0.32 0.42 0.28
C2 0.40 0.42 0.31 0.60 0.29 0.30 0.53 0.42 0.28 0.32 0.32
C3 0.62 0.33 0.31 0.60 0.38 0.33 0.57 0.52 0.28 0.27 0.22

Avg. Acc. 0.46 0.40 0.32 0.61 0.30 0.36 0.57 0.50 0.33 0.33 0.27
SD 0.50 0.49 0.47 0.49 0.46 0.48 0.50 0.50 0.47 0.47 0.44

p-value 0.10 0.73 0.73 0.76 0.58 0.51 0.94 0.57 0.17 0.37 0.64

Table 11: The accuracy of error handling for different types of errors under each condition.

Difficulty levels
Easy Medium Hard

B1 0.64 0.64 0.21
C1 0.71 0.64 0.36
C2 0.79 0.71 0.36
C3 0.79 0.50 0.29

Avg. Acc 0.73 0.63 0.30
SD 0.45 0.49 0.46

p-value 0.81 0.71 0.83

Table 12: The error-handling of different difficulty levels
under each condition

F2: The error handling mechanisms do not significantly
impact the overall time of completion. To study the impact of
different error handling mechanisms on time usage, we analyzed
the time of completion (ToC) of the query that was solved correctly
by the participants. We used the same ANOVA test as applied
in the previous analysis to test the mean difference among ToC
using various error handling mechanisms (Table 10), no significant
significance was found among the groups (𝑝 = 0.52).

Similarly, we analyzed the impact of different error-handling
mechanisms on the selected error types. In general, the baseline
method was more efficient in solving a task, while the conversa-
tional dialog system took more time compared with other methods.
The results are shown in Table 13.

Additionally, the results of experiments on SQL queries of various
levels of difficulty revealed differences among the error-handling
mechanisms tested in the case of easy queries (𝑝 = 0.04). Specifically,
direct editing was found to be the fastest method when the query

was easy, followed by the explanation and example-based approach
(C1), the explanation-based visualization approach (C2), and the
conversational dialog system (C3).

F3: Users perform better on error types with fewer variants.
Weanalyzed the impact of error types on task accuracy and ToC, and
reported the results in Table 15. The results revealed that among the
syntactic error types, A: WHERE errors and E: GROUP BY errors
had high accuracy, while for semantic error types, d: Value error
and e: Condition error had high accuracy. As shown in the
error taxonomy (Table 3), value errors occur only in the WHERE
clauses, and those errors usually require fewer steps to fix and have
little relationship with the other syntactic parts in an SQL query.
Similarly, condition errors such as wrong sorting directions
and wrong boolean operator (AND, OR, etc.) are relatively
independent components in a query. The better user performance
on those error types may indicate that users face challenges in
handling semantically complicated errors, such as joining tables and
selecting columns from multiple tables, but are more successful in
discovering and repairing error types where the error is more local
(i.e., with little interdependency with other parts of the query). This
conclusion is also evidenced in the user interview, which we will
analyze in the following section.

F4: The explanation- and example-based methods are more
useful for non-expert users. When participants were asked to
rate their preferences among the different interaction mechanisms
(shown in Table 16), we found that the explanation- and example-
based approach (C1) is the most preferred, while the explanation-
based visualization approach (C2) was rated similarly to the baseline
method (B1). In contrast, the conversational dialog system (C3) was
generally rated as less useful than the others.
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Syntactic types Semantic types
A B C D E a b c d e f

B1 112.0 98.5 97.5 109.7 109.6 104.0 93.8 116.0 130.0 121.7 103.0
C1 103.3 103.8 91.1 104.6 101.7 96.1 103.9 110.1 107.0 97.9 83.4
C2 117.9 108.2 86.2 96.8 93.0 99.5 119.0 129.7 108.7 105.2 95.0
C3 129.2 110.3 123.6 125.8 133.8 118.4 125.0 148.6 116.2 125.6 125.0

Avg. ToC 115.6 105.2 99.6 109.2 109.5 104.5 110.4 126.1 115.5 106.3 101.6
SD 33.2 68.8 48.5 45.0 73.1 53.3 37.5 77.2 73.6 49.1 59.3

p-value 0.87 0.99 0.39 0.60 0.70 0.82 0.24 0.71 0.91 0.17 0.48

Table 13: The average ToC of different error types under each condition.

Difficulty levels
Easy* Medium Hard

B1 31.8 124.4 133.6
C1 55.8 110.4 154.2
C2 79.0 110.5 199.1
C3 95.7 137.7 125.3

Avg. ToC 65.6 120.7 153.1
SD 50.9 96.2 97.7

p-value 0.04 0.60 0.39

Table 14: The average ToC of different difficulty levels under
each condition. *statistically significant difference (𝑝 < 0.05)

We found that the user’s level of expertise significantly impacts
their adoption rate of different error-handling mechanisms. The
adoption rate measures when a mechanism was available, and how
likely that a user will use the mechanism (instead of just using
the baseline method) to handle the error. We calculated the adop-
tion rate for each condition (C1, C2, and C3) for different levels of
expertise by dividing the number of SQL queries in which the par-
ticipant used the provided error-handling mechanism by the total
number of queries provided with the corresponding mechanism in
the participant’s study session. The result is shown in Table 17.

The primary factor contributing to the lower level of interest in
using error handling mechanisms among expert participants under
the experimental conditions was their ability to efficiently identify
and repair errors independently. For example, P2 stated that “It (the
step-by-step execution function in C1) is very redundant and time-
consuming to break down the SQL queries and execute the sub-queries,
since most errors can be found at first glance.” Another reason why
expert users were less interested in using the error handling mech-
anisms was that they were not confident in the intermediate results
they provided. P3, for example, noted that “Though the chatbot is
capable of revising the erroneous SQL queries, I found it sometimes
gives an incorrect answer and provides no additional clues for me
to validate the new query.” Therefore, several expert participants
chose to repair the original SQL query instead of validating and
repairing the newly generated query.

The study also showed that the conversational dialog system
(C3) was the least preferred mechanism among users at all levels
of expertise. One reason for this is the relatively low accuracy of

the model in recognizing user intents from the dialog and auto-
matically repairing the errors in the query. For example, P3 stated
that “Though it sometimes predicts the correct query, for most of the
times, the prediction is still erroneous.” In addition, the chatbot did
not provide explanations for its suggestions, so users had to spend
significant effort to validate and repair the newly generated SQL
queries. Furthermore, while the chatbot allowed manual input from
users to intervene in the prediction process, such as pointing out
erroneous parts and providing correct answers, it often introduced
new errors while predicting the SQL. As noted by P7: “In one exam-
ple, when I asked the chatbot to change the column name that was
in SELECT, it somehow changes the column in JOIN as well.” As a
result, many users quickly became frustrated after using it for a
few SQL queries.

F5: The explanation- and example-based methods are more
effective in helping users identify errors in the SQL query than
in repairing errors. In the post-study questionnaire, we asked par-
ticipants to evaluate the usefulness of each condition in terms of its
ability to help (1) identify and (2) repair errors, respectively (Fig. 4).
The results indicate that most of the participants found C1 to be
effective in identifying incorrect parts of the SQL query, while half
of them thought it was not useful for repairing errors. Meanwhile,
a notable proportion of participants (12 out of 26) affirmed C2’s
effectiveness in identifying the errors, but it was helpful for repair-
ing the errors. In terms of C3, a significant number of participants
(16 and 18) had a negative perception of its effectiveness in both
identifying and repairing errors within the SQL query.

Furthermore, we learned that the recursive natural language
explanations might help reduce the understanding barrier for a
long and syntactic-complicated SQL query. For example, P8 stated
that “By looking at the shorter sentences first at the beginning, I could
finally understand the meaning that the original long sentence were
trying to convey.” P17 also mentioned that: “Those shorter sentences
usually did not have complex grammatical structures and confus-
ing inter-table relationships, so that the problems were easier to be
spotted.” Additionally, executing the subquery and displaying the
results were deemed helpful for localizing the erroneous parts in the
original SQL query. For example, P23 stated: “When I noticed that
the retrieved result was empty, I realized that some problems should
exist in the current query.” In terms of C2, participants affirmed
the effectiveness of graph-based SQL visualization in helping them
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Syntactic types Avg. Acc. (𝜇 = 0.53) SD (𝜇 = 0.50) Avg. ToC (𝜇 = 128.8) SD (𝜇 = 91.4)
A 0.56 0.51 132.3 105.5
B 0.48 0.50 147.2 90.4
C 0.53 0.51 128.2 75.6
D 0.53 0.47 111.5 55.5
E 0.55 0.51 125.1 72.4

Semantic types Avg. Acc. (𝜇 = 0.54) SD (𝜇 = 0.50) Avg. ToC (𝜇 = 123.1) (N=26) SD (𝜇 = 80.53)
a 0.47 0.49 123.0 67.4
b 0.54 0.51 123.3 68.2
c 0.50 0.51 128.7 68.7
d 0.61 0.47 118.1 96.5
e 0.60 0.49 116.7 83.2
f 0.51 0.51 128.1 66.8

Table 15: The average accuracy and ToC (in seconds) for different error types.

Most useful 2nd most useful 3rd most useful least useful

B1 7 4 9 6

C1 13 10 3 0

C2 5 8 9 4

C3 1 4 5 16

Table 16: The participants’ ranked preferences for different error handling mechanisms

Expertise levels C1 (𝜇 = 0.74) C2 (𝜇 = 0.74) C3 (𝜇 = 0.41)
Expert 0.53 0.43 0.41

Intermediate 0.84 0.90 0.44
Novice 0.86 0.88 0.38

Table 17: The adoption rate of each mechanism among different expertise levels

better understand the relationship between the syntactical compo-
nents of a query. The learning barrier of this approach was also
the lowest among all experimental conditions: users could view the
connections to a table by simply clicking the widget in the canvas.

Then, we investigated why the participants were less satisfied
with the effectiveness of repairing errors in a SQL query for C1.
There were two main factors. First, the repair strategies supported
by the error-handling mechanisms were limited. Specifically, par-
ticipants could only replace the incorrect parts with their correct
substitutions using the drop-down menu of entity mappings, but
for queries that require the addition, deletion, or reorganization of
clauses, users had to manually edit the query. This limitation led to
frustration among participants and ultimately resulted in them not
prioritizing using this error-handling mechanism for future tasks.
Second, the current approach provided little assistance for users
in validating their edits. As a result, one participant stated that: “I
did not trust my own edits nor the suggested changes from the
approach.” (P20).

5 DISCUSSION AND DESIGN IMPLICATIONS
5.1 Improving NL2SQL model evaluations

through the error taxonomy
Currently, the evaluation of NL2SQL models is mainly based on
assessing their accuracy on large benchmark datasets. It is often un-
clear when and how the model fails. To address this limitation, our
work exemplifies the value of the development of error taxonomies.

Our error taxonomy for NL2SQL models enabled new analysis.
First, it allowed us to understand the types of syntactic and seman-
tic errors that a particular NL2SQL model tends to make in addition
to only the overall accuracy. This information can provide model
developers with specific information to improve the model’s robust-
ness against certain error types. Second, this taxonomy allowed
us to make fine-grained comparisons between models beyond the
accuracy metrics. By comparing the error distributions of different
models, we can identify not only the relative advantages of indi-
vidual models but also the common errors that current models are
prone to make.
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Figure 4: The result of the post-study questionnaire

5.2 Design opportunities for NL2SQL error
handling mechanisms

The result of our empirical study suggests that existing error han-
dling mechanisms do not perform as well on errors made by state-
of-the-art deep-learning-based NL2SQL models on complex cross-
domain tasks, despite the promising results reported in the respec-
tive evaluations of these mechanisms. We think the main reason
could be that our study used a much more challenging dataset than
what was used in prior studies. We used queries from Spider [63]
(which is complex and cross-domain) that the state-of-the-art of
NL2SQL models (instead of the earlier NL2SQL models, which
would start to make errors on simpler SQL queries) failed on. The
dataset used in our study more accurately represents realistic error
scenarios that users encounter in natural language data queries.
Here, we identified several design opportunities for more effective
NL2SQL error-handling mechanisms.

5.2.1 Enabling effective mixed-initiative collaboration between users
and error handling tools. Our findings indicate that the current
error-handling tools for NL2SQL models do not provide sufficient
feedback to users when they attempt to modify SQL queries. While
existing error-handling mechanisms, such as the conversational
dialog approach (C3), have focused on predicting correct modifi-
cations using static forms of user input, they have not adequately
addressed the need for mechanisms to elicit useful human feedback
to guide model prediction. For example, in C3, users provide input
in the form of multiple-choice options for the recommended loca-
tions of potential errors, which was considered confusing and not
useful by some participants, particularly when “none of the recom-
mended options made sense” (P15) or “the errors existed in multiple
places and cannot be fixed by only selecting one answer” (P24).
Therefore, we suggest that future work should focus on the devel-
opment of effective mixed initiative mechanisms that allow both
users and error-handling tools to develop a mutual understanding
of the model’s current state of understanding and the user’s intent.

5.2.2 Comprehending the generated queries and inspecting how
queries operate on data complement each other. The results of the
study suggested that, to support effective NL2SQL error handling
for users, it is important to help users (1) interpret the meaning
of the generated SQL query, untangle its structures, and explain
how it corresponds to the user’s NL query; and (2) inspect the be-
haviors of the query on example data and examine whether they
match user intents and expectations. The two parts are interde-
pendent on each other. In practice, the user’s preferences for these
different approaches may vary depending on their expertise. For
example, in our study, non-users and novice SQL users appreciated
the explanation-based visualization mechanism (in SQLVis [39])
and the NL explanations in step-by-step execution of the gener-
ated queries (in DIY [40]), because these mechanisms lower the
barrier to understanding the generated SQL queries for users who
are unfamiliar with SQL syntax and structures. This preference
was also reflected in their use of different mechanisms in the study.
Experienced SQL users, on the contrary, did not use mechanisms
for explaining the meanings of the generated SQL queries as often.
However, they found the entity mapping feature and the example
tables (in DIY) useful for discovering NL2SQL errors.

5.2.3 Opportunities for adaptive strategies. Lastly, the results of our
user study suggest that the most effective error handling strategy
to use depends on many factors such as user expertise, query type,
and possible errors types. For example, expert users may require
less sense-making strategies (e.g., step-by-step NL explanation),
while they may expect an intuitive execution result preview or an
efficient validation of the updated answer. In contrast, intermediate
or novice users may need more mix-initiative guides to facilitate er-
ror discovery and repair. Meanwhile, as discussed in Section 4.5, the
length, syntactical components, and potential error types of a query
would result in different barriers to users when repairing errors.
For example, for queries with more complicated syntactical struc-
tures, a visualization-based approach might be useful to reduce the
barrier to understanding the structure of the query. Therefore, we
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recommend that future work in this area consider the development
of adaptive error-handling strategies. An effective NL2SQL system
could adapt its interface features, models, and interaction strategies
according to the use case and context. Specifically, it could consider
the semantic and syntactic characteristics of the query, whether the
error is local (i.e., on a specific entity in the query) or global (i.e.,
regarding the overall query structure), and the user’s preferences
and level of expertise.

6 LIMITATIONS AND FUTUREWORK
The current study has several limitations. First, the distribution of
error types in the SQL queries used in the study is unbalanced. As
shown in Section 3.4.1, the error distributions show a large disparity
in the number of errors for each type of error among the different
models. Despite the fact that Spider is already a large-scale dataset,
there were only a small number of example errors in some rare
error types. Therefore, we must exclude these types of errors in
our analysis. In the future, by recruiting more participants and
collecting more data, we can include these categories of errors in
the analysis.

Second, despite that we chose three representative state-of-the-
art NL2SQL models in our analysis, there are several other promis-
ing NL2SQL models that we did not include in our analysis, mostly
due to the lack of open-source implementation of the engineer-
ing challenges in adapting them for our pipeline. In addition, all
the models used in our study are “black-box” models that do not
provide much transparency into the process by which NL instruc-
tions are parsed and SQL queries are synthesized. Interactive mod-
els [14, 53], on the other hand, provide the transparency that could
allow additional error handling mechanisms such as modifying the
intermediate results of the model predictions. In future work, we
will expand the scope of our research to include additional types of
representative NL2SQL models.

Lastly, while the example SQL querieswere real erroneous queries
made by NL2SQL models on realistic databases and natural lan-
guage queries, the setting of our study is still quite artificial, lacking
the real-world task context in the actual usage scenarios of NL2SQL
systems. In the future, it will be useful to study user error handling
behaviors through a field study to better understand the impact
of task-specific contexts on user behavior and the effectiveness of
user handling of NL2SQL errors.

7 CONCLUSION
In this paper, we presented (1) an empirical study to understand the
error types in the SQL query generated by NL2SQL models; and
(2) a controlled user experiment with 26 participants to measure
the effectiveness and efficiency of representative NL2SQL error
handling mechanisms. The error taxonomy summarizes 48 error
types and revealed their descriptive statistics. The results of the user
experiment revealed challenges and limitations of existing NL2SQL
error handling mechanisms on errors made by state-of-the-art deep-
learning-based NL2SQL models on complex cross-domain tasks.
Based on the results, we identified several research opportunities
and design implications for more effective and efficient mechanisms
for users to discover and repair errors in natural language database
queries.
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