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ABSTRACT

As the advent of COVID-19 pandemic, Al is rapidly adapted by con-
sumers and businesses. However, the reliability of machine learning
models has hindered the success of Al systems. Machine learning
model performance can fluctuate over time due to changes in the
data input into the model after deployment. Which means that
the statistical properties of the target variable, which the model
is trying to predict, change over time in unforeseen ways. This is
called concept drift (a.k.a model drift). Concept drift causes prob-
lems because the predictions become less accurate as time passes.
Consequently, detecting concept drift early on is essential for main-
taining up-to-date models in production that continuously provide
value to company. Ideally, this should be incorporated as part of
a robust framework for monitoring Machine Learning models in
production.

In this work, we evaluate the effectiveness of six concept drift
detection methods including ADaptive WINdowing (ADWIN) [2],
Drift Detection Method (DDM) [1], Early Drift Detection Method
(EDDM) [9], Drift Detection Method based on Hoeffding’s bounds
with moving average-test (HDDMA) [12], Drift Detection Method
based on Hoeffding’s bounds with moving weighted average-test
(HDDMW) [3], Kolmogorov - Smirnov Windowing (KSWIN) [14],
and Page-Hinkley (PageHinkley) [10] methods on the prediction
result of eleven models including CatBoost (CB) [13], LightGBM
(GBM), LightGBMLarge (GBML), LightGBMXT (GBMXT), KNeigh-
borsDist (KNND), KNeighborsUnif (KNNU), Long Short-Term Mem-
ory (LSTM) [8], neural networks based FastAI (NNFAI), Random
Forest (RF) [4], XGBoost (XGB) [6], and Extra Trees (XT) [7]. We
also evaluate to see how does signal processing techniques includ-
ing frequency decomposition and low pass filtering affect the result
of concept drift detection.
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1 INTRODUCTION

Drift is the change in an entity with respect to a baseline. Data Drift
is defined as a change in the distribution of data, which underlies
model drift. In the case of production Machine Learning models,
this is the change between the real-time production data and a
baseline data set, i.e. the training set, that is representative of the
task the model is intended to preform. Production data can diverge
or drift from the baseline data over time due to changes in the real
world. Drift of the predicted values is a good proxy for concept drift,
or data integrity issues and can inform model re-train cadence.
There are several types of Machine Learning drift:

Project Report, Pytorch,
2021.

e Concept drift (model drift) is defined as a change in the
distribution P(y|X), where y is the real label, and X are
the available features. It is a shift in the actual relationship
between the model’s inputs and the output. It is a change in
P(Y|X).

e Prediction drift is a shift in the model’s predictions. It is a
change in P(Y|X).

o Label drift is a shift in the model’s output or label distribution.
It is a change in P(Y).

o Feature drift is a shift in the model’s input data distribution.
It is a change in P(X).

Concept drift is a discrepancy between a real and learned decision
boundary. It is necessary to re-learn the data to maintain the accu-
racy of the previous regime. If ground truth labels are available and
sufficiently real-time, performance drift is the strongest indicator of
this. In the absence of real-time ground truth, drift in prediction and
feature distributions are often indicative of important changes in
the world. Unlike performance-drift, however, it is possible for these
quantities to drift with respect to an accurately modeled decision
boundary. In that case, model performance will be unchanged.

The problem with concept drift is that the core assumption of
Machine Learning is that the training distribution reflects the “real-
world® distribution, otherwise nothing ensures that the trained
model is fit for the target task. Concept drift is a central reason for
the need to refresh and retrain Machine Learning models. As the
incoming data drifts away from the historical data which was used
for training, the relationships and correlations between features
changes as well.

A popular choice of concept drift detection algorithm for stream-
ing data is the ADWIN. Some popular choices of concept drift de-
tection algorithm for batched data are the KSWIN, the chi-squared
test, and the adversarial validation.

1.1 Contribution:

e We find out that KSWIN is the best model drift detection
method in our case.

e We find out that the low pass filtering technique is helpful
to accurately detect model drift in our case.

2 METHOD

In this section, we introduce how concept drift detection methods
work.

2.1 ADWIN

ADaptive WINdowing is a popular drift detection method with
mathematical guarantees. ADWIN keeps a variable - length window
of recent items. It holds that there has no been change in the data
distribution. This window is further divided into two sub-windows
(Wh, W1) used to determine if a change has happened. ADWIN
compares the average of Wy and Wj to confirm that they correspond
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to the same distribution. Model drift is detected if the distribution
equality no longer holds. Upon detecting a drift, W} is replaced by
Wi and a new W is initialized. ADWIN uses a confidence value
n =€ (0, 1) to determine if the two sub-windows correspond to the
same distribution.

2.2 DDM

Drift Detection Method is a concept change detection method based
on the PAC learning model premise, that the learner’s error rate
will decrease as the number of analysed samples increase, as long
as the data distribution is stationary. If the algorithm detects an
increase in the error rate, which surpasses a threshold, (p; + s;),
where p; is the error rate at instant i and s; is the standard deviation
at instant i, then either change is detected or the algorithm will
warn the user that change may occur in the near future, which is
called the warning zone. The condition for entering the warning
zone is

Pi+Si = Pmin + 2 X Smin,

and detecting change is
Pi+Si = Pmin + 3 X Smin.

The minimum recorded error rate is represented as pmin and the
minimum recorded standard deviation is represented as spin.

2.3 EDDM

Early Drift Detection Method aims to improve the detection rate of
gradual concept drift in DDM, while keeping a good performance
against abrupt concept drift. It keeps track of the average distance
between two errors instead of only the error rate. For this, it is
necessary to keep track of the running average distance and the
running standard deviation, as well as the maximum distance and
the maximum standard deviation.

The algorithm is similar to the DDM algorithm. It works with
the running average distance and the running standard deviation,
as well as the values of p; and s; when (p] + 2 X s) reaches its
maximum.

Like DDM, there are two threshold values that define the bor-
derline among no change, warning zone, and drift detected. For

example,
p
! ’
p;t2Xs;
<«
pmax + 2 X smax

and
’ ’
p;t2Xs;
7 7’
Pmax + 2 X Smax

where ¢ = 0.95 and f = 0.9

< p,

2.4 HDDMA

Drift Detection Method based on Hoeffding’s bounds with moving
average-test is a method based on the Hoeffding’s inequality. HD-
DMA uses the average as estimator. It receives as input a stream of
real values and returns the estimated status of the stream: STABLE,
WARNING or DRIFT.
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2.5 HDDMW

Drift Detection Method based on Hoeffding’s bounds with moving
weighted average-test is a method based on McDiarmid’s bounds.
HDDMW uses the Exponentially Weighted Moving Average (EWMA)
statistic as estimator. It receives as input a stream of real predictions
and returns the estimated status of the stream: STABLE, WARNING
or DRIFT.

2.6 KSWIN

Kolmogorov - Smirnov Windowing is a method based on the Kol-
mogorov - Smirnov statistical test. KS-test is a statistical test with
no assumption of underlying data distribution. KSWIN can monitor
data or performance distributions. Note that the detector accepts
one dimensional input as array.

Kolmogorov - Smirnov Windowing maintains a sliding ¥ of fixed
window size n. The last state size r samples of ¥ are assumed to
represent the last concept considered as R. From the first n — r
samples of ¥, r samples are uniformly drawn, representing an
approximated last concept W.

The KS-test is performed on the window R and W of the same
size. KS-test compares the distance of the empirical cumulative data
distribution dist (R, W).

A concept drift is detected by KSWIN, if

dist(R, W) > ‘/—l"—“.
r

The difference in empirical data distribution between the windows
Rand W is too large since R and W come from the same distribution.

2.7 PageHinkley

Page-Hinkley method works by computing the observed values
and their mean up to the current moment. Page-Hinkley does not
signal warning zones, only change detection. The method works
by means of the Page-Hinkley test. In general lines it will detect a
concept drift if the observed mean at some instant is greater than a
threshold value lambda.

3 DATA

The data we use to evaluate the effectiveness of the model drift
detection methods is the outputs of models, include GBM, CB,
GBML, GBMXT, KNND, KNNU, LSTM, NNFAL RF, XGB, and XT
in order, trained on important features. So we have eleven output
sequences in total. The sequence of GBM model output is shown in
Figure 2. The other model outputs can be found in APPENDIX.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the purposed six
drift detection methods and the usefulness of signal processing
techniques on model drift detection. The purpose of drift detection
method is to identify the data distribution changes. A good drift
detection method is the one that maximize the true positives while
keeping the number of false positives to a minimum.

We use the purposed six drift detection methods, including AD-
WIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley, to
detect drifts on the GBM model output. Figure 1 shows the results
of the six drift detection methods on original data. We then use low
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Figure 1: GBM model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.

014§ — original signal
Remained signal

012 — Filtered sigTa\, fregs = 1/7

0.10 ‘

0.08

0.06 l \I “ i

1 “N'l

0.04 L U

0.02

0.00

0.02

')l i|||w‘m||| "M

Mm ,f H
W

nwm@’ "

!\

oJ

0 200

400

600

800

Figure 2: The figure on the left is the low pass filtered remaining GBM model output and the figure on the right is the frequency

decomposed GBM model output.

Figure 3: Drift detection on the low pass filtered remaining GBM model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.

I Kwi

D M G0 w0 030000 000070k T M &0 b w0 0000dsLes00msoim

b

W W 00 @0 00025 0000600

3

W0 M0 0 E0 00000025 00500075 0100 0 W0 A0 &0 EO0 0000 D025 D050 0TS 0100 DM 0 &0 %0 00000025 00500075 0100

Figure 4: Drift detection on the frequency decomposed GBM model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,

and PageHinkley methods in order.

pass filtering and frequency decomposition techniques to process
the original GBM model output. Figure 2 shows how the processed
GBM model output looks like. Then we used the six model drift
detection methods to detect on the processed GBM model output.
The detection results are shown in Figure 3 and Figure 4 for the
low pass filtered remaining GBM model output and the frequency
decomposed GBM model output, respectively.

Then we used the same procedure illustrated above to detect
model drifts on outputs of CB, GBML, GBMXT, KNND, KNNU,
LSTM, NNFAI, RF, XGB, and XT models. APPENDIX shows the
effectiveness of the six model drift detection methods on those
model outputs and the usefulness of signal processing techniques
on model drift detection.

5 CONCLUSION

By comparing the drift detection results in Figure 1, Figure 3, Fig-
ure 4, and APPENDIX, we find that KSWIN clearly detect out the

distribution changes in the given outputs. By comparing the dif-
ference between Figure 1, which is the model drift detection result
of original data, and Figure 3, which is the model drift detection
result of low pass filtered remaining data, and the difference be-
tween Figure 1 and Figure 4, which is the model drift detection
result of frequency decomposed data, we find out that the similarity
between the KSWIN detection result on the original data and the
low pass filtered remaining data is higher than the similar between
the KSWIN detection result on the original data and the frequency
decomposed data. This is also true in APPENDIX.

Therefore, KSWIN is the most effective model drift detection
method and the low pass filtering techniques is useful for accurately
detect the drift.

6 FUTURE WORK

There are several future works that we are planing to do:

o We will further investigate why KSWIN is the best fit for
our data and the other methods are not. We will look into
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the distribution of our data output and the inner structure
of the six drift detection algorithms.

e We will use a topological tool [16] to detect concept drift.
Specifically, using the Explainable Boosting Machine (EBM)
from InterpretML [11] in combination with the Mapper [15]
from Topological Data Analysis (TDA) [5].
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1 APPENDIX
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Figure 1: CB model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 2: The figure on the left is the low pass filtered remaining CB model output and the figure on the right is the frequency
decomposed CB model output.
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Figure 3: Drift detection on the low pass filtered remaining CB model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 4: Drift detection on the frequency decomposed CB model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 5: GBML model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 6: The figure on the left is the low pass filtered remaining GBML model output and the figure on the right is the frequency

decomposed GBML model output.
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Figure 7: Drift detection on the low pass filtered remaining GBML model output using ADWIN, EDDM, HDDMA, HDDMW,

KSWIN, and PageHinkley methods in order.
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Figure 8: Drift detection on the frequency decomposed GBML model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,

and PageHinkley methods in order.
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Figure 9: GBMXT model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 10: The figure on the left is the low pass filtered remaining GBMXT model output and the figure on the right is the

frequency decomposed GBMXT model output.
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Figure 11: Drift detection on the low pass filtered remaining GBMXT model output using ADWIN, EDDM, HDDMA, HDDMW,

KSWIN, and PageHinkley methods in order.
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Figure 12: Drift detection on the frequency decomposed GBMXT model output using ADWIN, EDDM,

KSWIN, and PageHinkley methods in order.
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Figure 13: KNND model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 14: The figure on the left is the low pass filtered remaining KNND

frequency decomposed KNND model output.
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Figure 15: Drift detection on the low pass filtered remaining KNND model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 16: Drift detection on the frequency decomposed KNND model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 17: KNNU model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 18: The figure on the left is the low pass filtered remaining KNNU model output and the figure on the right is the
frequency decomposed KNNU model output.
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Figure 19: Drift detection on the low pass filtered remaining KNNU model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 20: Drift detection on the frequency decomposed KNNU model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 21: LSTM model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 22: The figure on the left is the low pass filtered remaining LSTM model output and the figure on the right is the
frequency decomposed LSTM model output.
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Figure 23: Drift detection on the low pass filtered remaining LSTM model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 24: Drift detection on the frequency decomposed LSTM model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 25: NNFAI model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 26: The figure on the left is the low pass filtered remaining NNFAI model output and the figure on the right is the
frequency decomposed NNFAI model output.
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Figure 27: Drift detection on the low pass filtered remaining NNFAI model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 28: Drift detection on the frequency decomposed NNFAI model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 29: RF model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 30: The figure on the left is the low pass filtered remaining RF model output and the figure on the right is the frequency
decomposed RF model output.
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Figure 31: Drift detection on the low pass filtered remaining RF model output using ADWIN,

KSWIN, and PageHinkley methods in order.
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Figure 32: Drift detection on the frequency decomposed RF model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 33: XGB model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 34: The figure on the left is the low pass filtered remaining XGB model output and the figure on the right is the frequency
decomposed XGB model output.
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Figure 35: Drift detection on the low pass filtered remaining XGB model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 36: Drift detection on the frequency decomposed XGB model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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Figure 37: XT model drift detection using ADWIN, EDDM, HDDMA, HDDMW, KSWIN, and PageHinkley methods in order.
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Figure 38: The figure on the left is the low pass filtered remaining XT model output and the figure on the right is the frequency
decomposed XT model output.
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Figure 39: Drift detection on the low pass filtered remaining XT model output using ADWIN, EDDM, HDDMA, HDDMW,
KSWIN, and PageHinkley methods in order.
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Figure 40: Drift detection on the frequency decomposed XT model output using ADWIN, EDDM, HDDMA, HDDMW, KSWIN,
and PageHinkley methods in order.
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